These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37131820)

  • 1. BOUNTI: Brain vOlumetry and aUtomated parcellatioN for 3D feTal MRI.
    Uus AU; Kyriakopoulou V; Makropoulos A; Fukami-Gartner A; Cromb D; Davidson A; Cordero-Grande L; Price AN; Grigorescu I; Williams LZJ; Robinson EC; Lloyd D; Pushparajah K; Story L; Hutter J; Counsell SJ; Edwards AD; Rutherford MA; Hajnal JV; Deprez M
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D T2w fetal body MRI: automated organ volumetry, growth charts and population-averaged atlas.
    Uus AU; Hall M; Grigorescu I; Zampieri CA; Collado AE; Payette K; Matthew J; Kyriakopoulou V; Hajnal JV; Hutter J; Rutherford MA; Deprez M; Story L
    medRxiv; 2023 Sep; ():. PubMed ID: 37398121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated body organ segmentation, volumetry and population-averaged atlas for 3D motion-corrected T2-weighted fetal body MRI.
    Uus AU; Hall M; Grigorescu I; Avena Zampieri C; Egloff Collado A; Payette K; Matthew J; Kyriakopoulou V; Hajnal JV; Hutter J; Rutherford MA; Deprez M; Story L
    Sci Rep; 2024 Mar; 14(1):6637. PubMed ID: 38503833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Craniofacial phenotyping with fetal MRI: a feasibility study of 3D visualisation, segmentation, surface-rendered and physical models.
    Matthew J; Uus A; De Souza L; Wright R; Fukami-Gartner A; Priego G; Saija C; Deprez M; Collado AE; Hutter J; Story L; Malamateniou C; Rhode K; Hajnal J; Rutherford MA
    BMC Med Imaging; 2024 Mar; 24(1):52. PubMed ID: 38429666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spatio-temporal atlas of the developing fetal brain with spina bifida aperta.
    Fidon L; Viola E; Mufti N; David AL; Melbourne A; Demaerel P; Ourselin S; Vercauteren T; Deprest J; Aertsen M
    Open Res Eur; 2021; 1():123. PubMed ID: 37645096
    [No Abstract]   [Full Text] [Related]  

  • 6. Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
    Li X; Chen L; Kutten K; Ceritoglu C; Li Y; Kang N; Hsu JT; Qiao Y; Wei H; Liu C; Miller MI; Mori S; Yousem DM; van Zijl PCM; Faria AV
    Neuroimage; 2019 May; 191():337-349. PubMed ID: 30738207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomically curated segmentation of human subcortical structures in high resolution magnetic resonance imaging: An open science approach.
    Rushmore RJ; Sunderland K; Carrington H; Chen J; Halle M; Lasso A; Papadimitriou G; Prunier N; Rizzoni E; Vessey B; Wilson-Braun P; Rathi Y; Kubicki M; Bouix S; Yeterian E; Makris N
    Front Neuroanat; 2022; 16():894606. PubMed ID: 36249866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.
    Lim IA; Faria AV; Li X; Hsu JT; Airan RD; Mori S; van Zijl PC
    Neuroimage; 2013 Nov; 82():449-69. PubMed ID: 23769915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range.
    Uus AU; Grigorescu I; van Poppel MPM; Steinweg JK; Roberts TA; Rutherford MA; Hajnal JV; Lloyd DFA; Pushparajah K; Deprez M
    Med Image Anal; 2022 Aug; 80():102484. PubMed ID: 35649314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation.
    Uus AU; van Poppel MPM; Steinweg JK; Grigorescu I; Ramirez Gilliland P; Roberts TA; Egloff Collado A; Rutherford MA; Hajnal JV; Lloyd DFA; Pushparajah K; Deprez M
    J Cardiovasc Magn Reson; 2022 Dec; 24(1):71. PubMed ID: 36517850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal brain volumetry through MRI volumetric reconstruction and segmentation.
    Gholipour A; Estroff JA; Barnewolt CE; Connolly SA; Warfield SK
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):329-39. PubMed ID: 20625848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
    Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA
    Eur Radiol; 2024 Aug; 34(8):5056-5065. PubMed ID: 38217704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concordance between US and MRI Two-Dimensional Measurement and Volumetric Segmentation in Fetal Ventriculomegaly.
    Hadjidekov G; Haynatzki G; Chaveeva P; Nikolov M; Masselli G; Rossi A
    Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to segment fetal brain tissue from noisy annotations.
    Karimi D; Rollins CK; Velasco-Annis C; Ouaalam A; Gholipour A
    Med Image Anal; 2023 Apr; 85():102731. PubMed ID: 36608414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach.
    Zhao L; Asis-Cruz JD; Feng X; Wu Y; Kapse K; Largent A; Quistorff J; Lopez C; Wu D; Qing K; Meyer C; Limperopoulos C
    AJNR Am J Neuroradiol; 2022 Mar; 43(3):448-454. PubMed ID: 35177547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Craniofacial Biometry with 3D T2w Fetal MRI.
    Matthew J; Uus A; Collado AE; Luis A; Arulkumaran S; Fukami-Gartner A; Kyriakopoulou V; Cromb D; Wright R; Colford K; Deprez M; Hutter J; O'Muircheartaigh J; Malamateniou C; Razavi R; Story L; Hajnal J; Rutherford MA
    medRxiv; 2024 Aug; ():. PubMed ID: 39185514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated template-based brain localization and extraction for fetal brain MRI reconstruction.
    Tourbier S; Velasco-Annis C; Taimouri V; Hagmann P; Meuli R; Warfield SK; Bach Cuadra M; Gholipour A
    Neuroimage; 2017 Jul; 155():460-472. PubMed ID: 28408290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-automatic segmentation of the fetal brain from magnetic resonance imaging.
    Wang J; Nichols ES; Mueller ME; de Vrijer B; Eagleson R; McKenzie CA; de Ribaupierre S; Duerden EG
    Front Neurosci; 2022; 16():1027084. PubMed ID: 36440277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.