These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3713223)

  • 1. Intestinal absorption by carrier-mediated transports: two-dimensional laminar flow model.
    Yuasa H; Miyamoto Y; Iga T; Hanano M
    J Theor Biol; 1986 Mar; 119(1):25-36. PubMed ID: 3713223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of kinetic parameters of a carrier-mediated transport in the perfused intestine by two-dimensional laminar flow model: effects of the unstirred water layer.
    Yuasa H; Miyamoto Y; Iga T; Hanano M
    Biochim Biophys Acta; 1986 Apr; 856(2):219-30. PubMed ID: 3955040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laminar flow absorption model for a carrier-mediated transport in the intestinal tract.
    Yuasa H; Miyamoto Y; Iga T; Hanano M
    J Pharmacobiodyn; 1984 Aug; 7(8):604-6. PubMed ID: 6512682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative assessment of the resistance of the unstirred water layer to solute transport between two different intestinal perfusion systems.
    Yuasa H; Iga T; Hanano M; Watanabe J
    Biochim Biophys Acta; 1988 Feb; 938(2):189-98. PubMed ID: 3342231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical discussion of the use of the Lineweaver-Burk plot to estimate kinetic parameters of intestinal transport in the presence of unstirred water layers.
    Thomson AB
    Can J Physiol Pharmacol; 1981 Sep; 59(9):932-48. PubMed ID: 7296397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of perfusion rate on the kinetics of intestinal sugar absorption in rats and hamsters in vivo.
    Ortiz M; Vázquez A; Lluch M; Ponz F
    Rev Esp Fisiol; 1982 Jun; 38(2):131-42. PubMed ID: 7122970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration profile in the intestinal tract and drug absorption model: two-dimensional laminar flow in a circular porous tube.
    Miyamoto Y; Hanano M; Iga T; Ishikawa M
    J Theor Biol; 1983 Jun; 102(4):585-601. PubMed ID: 6621058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A drug absorption model of the intestinal tract based on the two-dimensional laminar flow in a circular tube.
    Miyamoto Y; Hanano M; Iga T; Ishikawa M
    J Pharmacobiodyn; 1982 Jun; 5(6):445-7. PubMed ID: 7120040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier-mediated transport of glycerol in the perfused rat small intestine.
    Ohta KY; Inoue K; Hayashi Y; Yuasa H
    Biol Pharm Bull; 2006 Apr; 29(4):785-9. PubMed ID: 16595918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of anesthetic regimens on the intestinal absorption of 5-fluorouracil in rats.
    Yuasa H; Matsuda K; Watanabe J
    Biol Pharm Bull; 1995 May; 18(5):747-52. PubMed ID: 7492994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The computation of saturable and linear components of intestinal and other transport kinetics.
    Atkins GL; Gardner ML
    Biochim Biophys Acta; 1977 Jul; 468(1):127-45. PubMed ID: 884081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of perfusion rate on absorption, surface area, unstirred water layer thickness, permeability, and intraluminal pressure in the rat ileum in vivo.
    Lewis LD; Fordtran JS
    Gastroenterology; 1975 Jun; 68(6):1509-16. PubMed ID: 1132632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations of the Eadie-Hofstee plot to estimate kinetic parameters of intestinal transport in the presence of an unstirred water layer.
    Thomson AB
    J Membr Biol; 1979 May; 47(1):39-57. PubMed ID: 458847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination.
    Kou JH; Fleisher D; Amidon GL
    Pharm Res; 1991 Mar; 8(3):298-305. PubMed ID: 2052515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unstirred layer, source of biased Michaelis constant in membrane transport.
    Winne D
    Biochim Biophys Acta; 1973 Feb; 298(1):27-31. PubMed ID: 4736038
    [No Abstract]   [Full Text] [Related]  

  • 16. Competitive nature of the intestinal transport mechanism for cobalt and iron in the rat.
    Thomson AB; Valberg LS; Sinclair DG
    J Clin Invest; 1971 Nov; 50(11):2384-94. PubMed ID: 5096521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogenic transport of glucose in the normal upper duodenum. II. Unstirred water layer and estimation of real transport constants.
    Sparsø BH; Luke M; Wium E
    Scand J Gastroenterol; 1984 Jun; 19(4):568-74. PubMed ID: 6463581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of the apparent Michaelis constant, biased by an unstirred layer, if a passive transport component is present.
    Winne D
    Biochim Biophys Acta; 1977 Jan; 464(1):118-26. PubMed ID: 831787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nasal absorption of tyrosine-linked model compounds.
    Yang C; Mitra AK
    J Pharm Sci; 2001 Mar; 90(3):340-7. PubMed ID: 11170027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of resistance of barriers to solute transport in vivo in rat jejunum.
    Westergaard H; Holtermüller KH; Dietschy JM
    Am J Physiol; 1986 Jun; 250(6 Pt 1):G727-35. PubMed ID: 3717335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.