BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37132292)

  • 1. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting.
    Hao J; Wu K; Lyu C; Yang Y; Wu H; Liu J; Liu N; Lau WM; Zheng J
    Mater Horiz; 2023 Jul; 10(7):2312-2342. PubMed ID: 37132292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metal-free CZTS electrocatalysis: synergetic characteristics and emerging applications towards water splitting reactions.
    Dhawale SC; Digraskar RV; Ghule AV; Sathe BR
    Front Chem; 2024; 12():1394191. PubMed ID: 38882214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Wang B; Yang F; Feng L
    Small; 2023 Nov; 19(45):e2302866. PubMed ID: 37434101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood-Structured Nanomaterials as Highly Efficient, Self-Standing Electrocatalysts for Water Splitting.
    Huang J; Shi Z; Mao C; Yang G; Chen Y
    Small; 2024 Jun; ():e2402511. PubMed ID: 38837861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ce-doped multi-phase NiMo-based phosphorus/sulfide heterostructure for efficient photo-enhanced overall water splitting at high current densities.
    Cheng Y; Yuan A; Zhang Y; Liu H; Du J; Chen L
    J Colloid Interface Sci; 2024 Apr; 660():166-176. PubMed ID: 38241865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt-Based Metal-Organic Frameworks and Their Derivatives for Hydrogen Evolution Reaction.
    Han W; Li M; Ma Y; Yang J
    Front Chem; 2020; 8():592915. PubMed ID: 33330381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy.
    Chen Z; Yun S; Wu L; Zhang J; Shi X; Wei W; Liu Y; Zheng R; Han N; Ni BJ
    Nanomicro Lett; 2022 Dec; 15(1):4. PubMed ID: 36454315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D nanocomposite materials for HER electrocatalysts - a review.
    Sobhani Bazghale F; Gilak MR; Zamani Pedram M; Torabi F; Naikoo GA
    Heliyon; 2024 Jan; 10(1):e23450. PubMed ID: 38192770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition Metals-Based Water Splitting Electrocatalysts on Copper-Based Substrates: The Integral Role of Morphological Properties.
    Selvanathan S; Meng Woi P; Selvanathan V; Karim MR; Sopian K; Akhtaruzzaman M
    Chem Rec; 2024 Jan; 24(1):e202300228. PubMed ID: 37857549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress of molybdenum carbide based electrocatalysts for electrocatalytic hydrogen evolution reaction.
    Tong Y; Zhang Z; Hou Y; Yan L; Chen X; Zhang H; Wang X; Li Y
    Nanoscale; 2023 Sep; 15(36):14717-14736. PubMed ID: 37655752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain Engineering for Electrocatalytic Overall Water Splitting.
    Guo W; Chai DF; Li J; Yang X; Fu S; Sui G; Zhuang Y; Guo D
    Chempluschem; 2024 Mar; ():e202300605. PubMed ID: 38459914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction.
    Aruchamy G; Kim BK
    Crit Rev Anal Chem; 2024 Jun; ():1-17. PubMed ID: 38829955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts.
    Luo Y; Zhang Y; Zhu J; Tian X; Liu G; Feng Z; Pan L; Liu X; Han N; Tan R
    Small Methods; 2024 May; ():e2400158. PubMed ID: 38745530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteronuclear Dual Metal Atom Electrocatalysts for Water-Splitting Reactions.
    Lu L; Wu X
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms.
    Zhu Z; Duan J; Chen S
    Small; 2024 May; 20(20):e2309119. PubMed ID: 38126651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the Electro-oxidation Mechanism of 5-Aminotetrazole on Nickel-Based Oxides and Synthesizing 5,5'-Azotetrazolate Salts.
    Qin Y; Yang F; Chen Z; Lu M; Wang P
    Inorg Chem; 2024 Jul; 63(26):12299-12308. PubMed ID: 38888107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting.
    Wang P; Zheng J; Xu X; Zhang YQ; Shi QF; Wan Y; Ramakrishna S; Zhang J; Zhu L; Yokoshima T; Yamauchi Y; Long YZ
    Adv Mater; 2024 Jun; ():e2404806. PubMed ID: 38857437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel Hydroxide-Based Electrocatalysts for Promising Electrochemical Oxidation Reactions: Beyond Water Oxidation.
    Sun H; Song S
    Small; 2024 Mar; ():e2401343. PubMed ID: 38506594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Spillover Phenomenon at the Interface of Metal-Supported Electrocatalysts for Hydrogen Evolution.
    Li J; Ma Y; Ho JC; Qu Y
    Acc Chem Res; 2024 Mar; 57(6):895-904. PubMed ID: 38427852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Light-Emitting Electrode Arrays for the Evaluation of Electrocatalytic Activity.
    Boukarkour Y; Reculusa S; Sojic N; Kuhn A; Salinas G
    Chemistry; 2024 May; 30(29):e202400078. PubMed ID: 38470292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.