BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37132412)

  • 1. Can nanotechnology improve the application of bioherbicides?
    Pérez-de-Luque A
    Pest Manag Sci; 2024 Jan; 80(1):49-55. PubMed ID: 37132412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioherbicides: Current knowledge on weed control mechanism.
    Radhakrishnan R; Alqarawi AA; Abd Allah EF
    Ecotoxicol Environ Saf; 2018 Aug; 158():131-138. PubMed ID: 29677595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why are there no widely successful microbial bioherbicides for weed management in crops?
    Duke SO
    Pest Manag Sci; 2024 Jan; 80(1):56-64. PubMed ID: 37271934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broad host-range pathogens as bioherbicides: managing nontarget plant disease risk.
    Bourdôt GW; Casonato SG
    Pest Manag Sci; 2024 Jan; 80(1):28-34. PubMed ID: 36789792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture.
    An C; Sun C; Li N; Huang B; Jiang J; Shen Y; Wang C; Zhao X; Cui B; Wang C; Li X; Zhan S; Gao F; Zeng Z; Cui H; Wang Y
    J Nanobiotechnology; 2022 Jan; 20(1):11. PubMed ID: 34983545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application technology for bioherbicides: challenges and opportunities with dry inoculum and liquid spray formulations.
    Hewitt AJ; Galea VJ; O'Donnell C
    Pest Manag Sci; 2024 Jan; 80(1):72-80. PubMed ID: 38018887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals.
    Vurro M; Miguel-Rojas C; Pérez-de-Luque A
    Pest Manag Sci; 2019 Sep; 75(9):2403-2412. PubMed ID: 30672106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in Biological Control of Weeds with Plant Pathogens.
    Morin L
    Annu Rev Phytopathol; 2020 Aug; 58():201-223. PubMed ID: 32384863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-Associated Bacteria as Sources for the Development of Bioherbicides.
    Fang W; Liu F; Wu Z; Zhang Z; Wang K
    Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture.
    Mubeen I; Fawzi Bani Mfarrej M; Razaq Z; Iqbal S; Naqvi SAH; Hakim F; Mosa WFA; Moustafa M; Fang Y; Li B
    Plant Physiol Biochem; 2023 May; 198():107670. PubMed ID: 37018866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective of fungal pathogen-based bioherbicides for the control of water hyacinth: A review.
    Sharma S; Pandey LM
    J Basic Microbiol; 2022 Mar; 62(3-4):415-427. PubMed ID: 34750838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three Active Phytotoxic Compounds from the Leaves of
    Hossen K; Ozaki K; Teruya T; Kato-Noguchi H
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies.
    Perotti VE; Larran AS; Palmieri VE; Martinatto AK; Permingeat HR
    Plant Sci; 2020 Jan; 290():110255. PubMed ID: 31779903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management.
    Hasan M; Ahmad-Hamdani MS; Rosli AM; Hamdan H
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34203650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Bipolaris yamadae as a bioherbicidal agent against grass weeds in arable crops.
    Tan M; Ding Y; Bourdôt GW; Qiang S
    Pest Manag Sci; 2024 Jan; 80(1):166-175. PubMed ID: 37367835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species.
    Zhang Y; Goss GG
    J Hazard Mater; 2022 Oct; 439():129559. PubMed ID: 35863222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of plant viruses as bioherbicides: the first virus-based bioherbicide and future opportunities.
    Charudattan R
    Pest Manag Sci; 2024 Jan; 80(1):103-114. PubMed ID: 37682594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent trends in praziquantel nanoformulations for helminthiasis treatment.
    Mengarda AC; Iles B; F Longo JP; de Moraes J
    Expert Opin Drug Deliv; 2022 Apr; 19(4):383-393. PubMed ID: 35264036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Toothpick Project: commercialization of a virulence-selected fungal bioherbicide for Striga hermonthica (witchweed) biocontrol in Kenya.
    Baker CS; Sands DC; Nzioki HS
    Pest Manag Sci; 2024 Jan; 80(1):65-71. PubMed ID: 37682845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield.
    Karkanis A; Lykas C; Liava V; Bezou A; Petropoulos S; Tsiropoulos N
    J Sci Food Agric; 2018 Jan; 98(1):43-50. PubMed ID: 28503740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.