These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37132500)
1. Metal-Induced Fast Vibrational Energy Relaxation: Quantum Nuclear Effects Captured in Diabatic Independent Electron Surface Hopping (IESH-D) Method. De PK; Jain A J Phys Chem A; 2023 May; 127(18):4166-4179. PubMed ID: 37132500 [TBL] [Abstract][Full Text] [Related]
2. Detailed Balance and Independent Electron Surface-Hopping Method: The Importance of Decoherence and Correct Calculation of Diabatic Populations. Pradhan CS; Jain A J Chem Theory Comput; 2022 Aug; 18(8):4615-4626. PubMed ID: 35880817 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking the Surface Hopping Method to Include Nuclear Quantum Effects. Sindhu A; Jain A J Chem Theory Comput; 2021 Feb; 17(2):655-665. PubMed ID: 33432812 [TBL] [Abstract][Full Text] [Related]
4. Nonadiabatic dynamics at metal surfaces: independent electron surface hopping with phonon and electron thermostats. Shenvi N; Tully JC Faraday Discuss; 2012; 157():325-35; discussion 375-98. PubMed ID: 23230776 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of different methods for calculating electronic transition rates. Kananenka AA; Sun X; Schubert A; Dunietz BD; Geva E J Chem Phys; 2018 Mar; 148(10):102304. PubMed ID: 29544297 [TBL] [Abstract][Full Text] [Related]
6. Nonadiabatic dynamics at metal surfaces: independent-electron surface hopping. Shenvi N; Roy S; Tully JC J Chem Phys; 2009 May; 130(17):174107. PubMed ID: 19425769 [TBL] [Abstract][Full Text] [Related]
7. First-Principles Nonadiabatic Dynamics of Molecules at Metal Surfaces with Vibrationally Coupled Electron Transfer. Meng G; Gardner J; Hertl N; Dou W; Maurer RJ; Jiang B Phys Rev Lett; 2024 Jul; 133(3):036203. PubMed ID: 39094165 [TBL] [Abstract][Full Text] [Related]
8. Calculation of electron transfer rates using mixed quantum classical approaches: nonadiabatic limit and beyond. Xie W; Bai S; Zhu L; Shi Q J Phys Chem A; 2013 Jul; 117(29):6196-204. PubMed ID: 23534444 [TBL] [Abstract][Full Text] [Related]
9. Efficient implementation and performance analysis of the independent electron surface hopping method for dynamics at metal surfaces. Gardner J; Corken D; Janke SM; Habershon S; Maurer RJ J Chem Phys; 2023 Feb; 158(6):064101. PubMed ID: 36792522 [TBL] [Abstract][Full Text] [Related]
10. Assessing the performance of trajectory surface hopping methods: Ultrafast internal conversion in pyrazine. Xie W; Sapunar M; Došlić N; Sala M; Domcke W J Chem Phys; 2019 Apr; 150(15):154119. PubMed ID: 31005116 [TBL] [Abstract][Full Text] [Related]
11. A comparison of surface hopping approaches for capturing metal-molecule electron transfer: A broadened classical master equation versus independent electron surface hopping. Miao G; Ouyang W; Subotnik J J Chem Phys; 2019 Jan; 150(4):041711. PubMed ID: 30709317 [TBL] [Abstract][Full Text] [Related]
12. Recovering Marcus Theory Rates and Beyond without the Need for Decoherence Corrections: The Mapping Approach to Surface Hopping. Lawrence JE; Mannouch JR; Richardson JO J Phys Chem Lett; 2024 Jan; 15(3):707-716. PubMed ID: 38214476 [TBL] [Abstract][Full Text] [Related]
13. Nonadiabatic Molecular Dynamics at Metal Surfaces. Dou W; Subotnik JE J Phys Chem A; 2020 Feb; 124(5):757-771. PubMed ID: 31916769 [TBL] [Abstract][Full Text] [Related]
14. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface. Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561 [TBL] [Abstract][Full Text] [Related]
15. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. Gardner J; Habershon S; Maurer RJ J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(31):15257-15270. PubMed ID: 37583439 [TBL] [Abstract][Full Text] [Related]
16. Nonadiabatic Kinetics in the Intermediate Coupling Regime: Comparing Molecular Dynamics to an Energy-Grained Master Equation. Shchepanovska D; Shannon RJ; Curchod BFE; Glowacki DR J Phys Chem A; 2021 Apr; 125(16):3473-3488. PubMed ID: 33880919 [TBL] [Abstract][Full Text] [Related]
17. Extending non-adiabatic rate theory to strong electronic couplings in the Marcus inverted regime. Fay TP J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38949594 [TBL] [Abstract][Full Text] [Related]
18. On transition rates in surface hopping. Escartín JM; Romaniello P; Stella L; Reinhard PG; Suraud E J Chem Phys; 2012 Dec; 137(23):234113. PubMed ID: 23267477 [TBL] [Abstract][Full Text] [Related]
19. Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0→1,2,3) in collisions with Au(111). Golibrzuch K; Kandratsenka A; Rahinov I; Cooper R; Auerbach DJ; Wodtke AM; Bartels C J Phys Chem A; 2013 Aug; 117(32):7091-101. PubMed ID: 23947910 [TBL] [Abstract][Full Text] [Related]
20. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. Carof A; Giannini S; Blumberger J J Chem Phys; 2017 Dec; 147(21):214113. PubMed ID: 29221382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]