BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37132607)

  • 1. Alkali Metal Dihydropyridines in Transfer Hydrogenation Catalysis of Imines: Amide Basicity versus Hydride Surrogacy.
    Macdonald PA; Banerjee S; Kennedy AR; van Teijlingen A; Robertson SD; Tuttle T; Mulvey RE
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202304966. PubMed ID: 37132607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Studies of Hydride Transfer to Imines from a Highly Active and Chemoselective Manganate Catalyst.
    Freitag F; Irrgang T; Kempe R
    J Am Chem Soc; 2019 Jul; 141(29):11677-11685. PubMed ID: 31251596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes.
    Wang Y; Liu S; Yang H; Li H; Lan Y; Liu Q
    Nat Chem; 2022 Nov; 14(11):1233-1241. PubMed ID: 36097055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-catalyzed transfer hydrogenation of imines by propan-2-ol in benzene.
    Samec JS; Bäckvall JE
    Chemistry; 2002 Jul; 8(13):2955-61. PubMed ID: 12489225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic Barium: A Versatile and Efficient Hydrogenation Catalyst.
    Stegner P; Färber C; Zenneck U; Knüpfer C; Eyselein J; Wiesinger M; Harder S
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4252-4258. PubMed ID: 33180975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity.
    Marcelli T; Hammar P; Himo F
    Chemistry; 2008; 14(28):8562-71. PubMed ID: 18683177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory investigation of Ru(II) and Os(II) asymmetric transfer hydrogenation catalysts.
    Bolitho EM; Coverdale JPC; Wolny JA; Schünemann V; Sadler PJ
    Faraday Discuss; 2022 May; 234(0):264-283. PubMed ID: 35156974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Alkaline-Earth Metal-Catalyst: A Theoretical Study of Pyridines Hydroboration.
    Li Y; Wu M; Chen H; Xu D; Qu L; Zhang J; Bai R; Lan Y
    Front Chem; 2019; 7():149. PubMed ID: 30972320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1-Alkali-metal-2-alkyl-1,2-dihydropyridines: Soluble Hydride Surrogates for Catalytic Dehydrogenative Coupling and Hydroboration Applications.
    McLellan R; Kennedy AR; Mulvey RE; Orr SA; Robertson SD
    Chemistry; 2017 Nov; 23(66):16853-16861. PubMed ID: 28940713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired catalytic imine reduction by rhodium complexes with tethered Hantzsch pyridinium groups: evidence for direct hydride transfer from dihydropyridine to metal-activated substrate.
    McSkimming A; Bhadbhade MM; Colbran SB
    Angew Chem Int Ed Engl; 2013 Mar; 52(12):3411-6. PubMed ID: 23441069
    [No Abstract]   [Full Text] [Related]  

  • 12. Nickel-catalyzed asymmetric transfer hydrogenation of hydrazones and other ketimines.
    Xu H; Yang P; Chuanprasit P; Hirao H; Zhou JS
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5112-6. PubMed ID: 25737093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insight on the hydrogenation of conjugated alkenes with h(2) catalyzed by early main-group metal catalysts.
    Zeng G; Li S
    Inorg Chem; 2010 Apr; 49(7):3361-9. PubMed ID: 20196551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zeolite-catalyzed hydrogenation of carbon dioxide and ethene.
    Chan B; Radom L
    J Am Chem Soc; 2008 Jul; 130(30):9790-9. PubMed ID: 18593117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Hydride Transfer in Catalytic Hydrogenation via σ-Electron-Induced Polarization of Imines.
    Liu S; Yang H; Wang YN; Zhao Q; Wang Y; Bai R; Liu Q; Lan Y
    J Am Chem Soc; 2024 May; ():. PubMed ID: 38717282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amide Iridium Complexes As Catalysts for Transfer Hydrogenation Reduction of
    Wen H; Luo N; Zhu Q; Luo R
    J Org Chem; 2021 Mar; 86(5):3850-3859. PubMed ID: 33595324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.
    Morris RH
    Acc Chem Res; 2015 May; 48(5):1494-502. PubMed ID: 25897779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand Effect in Alkali-Metal-Catalyzed Transfer Hydrogenation of Ketones.
    Alshakova ID; Foy HC; Dudding T; Nikonov GI
    Chemistry; 2019 Sep; 25(50):11734-11744. PubMed ID: 31318992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenation and Transfer Hydrogenation Promoted by Tethered Ru-S Complexes: From Cooperative Dihydrogen Activation to Hydride Abstraction/Proton Release from Dihydrogen Surrogates.
    Lefranc A; Qu ZW; Grimme S; Oestreich M
    Chemistry; 2016 Jul; 22(29):10009-16. PubMed ID: 27311877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.
    Zuo W; Morris RH
    Nat Protoc; 2015 Feb; 10(2):241-57. PubMed ID: 25569331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.