These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37132820)

  • 1. Mid-wave infrared optical receiver based on an InAsSb-nBn photodetector using the barrier doping engineering technique for low-power satellite optical wireless communication.
    Shaveisi M; Aliparast P
    Appl Opt; 2023 Apr; 62(10):2675-2683. PubMed ID: 37132820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches.
    Shaveisi M; Aliparast P
    Front Optoelectron; 2023 Apr; 16(1):5. PubMed ID: 37022594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InAs/InAsSb Strained-Layer Superlattice Mid-Wavelength Infrared Detector for High-Temperature Operation.
    Ariyawansa G; Duran J; Reyner C; Scheihing J
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolithic integrated two-stage cascaded SOA-PIN receiver for high-speed optical wireless communication.
    Lei Y; Yan X; Li C; Bente E; Yao W; Cao Z; Koonen T
    Opt Lett; 2022 May; 47(10):2578-2581. PubMed ID: 35561405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upside-down InAs/InAs
    Deng G; Song X; Fan M; Xiao T; Luo Z; Chen N; Yang W; Zhang Y
    Opt Express; 2020 Apr; 28(9):13616-13624. PubMed ID: 32403832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. nBn extended short-wavelength infrared focal plane array.
    Dehzangi A; Haddadi A; Chevallier R; Zhang Y; Razeghi M
    Opt Lett; 2018 Feb; 43(3):591-594. PubMed ID: 29400848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant cavity-enhanced photodetector incorporating a type-II superlattice to extend MWIR sensitivity.
    Letka V; Bainbridge A; Craig AP; Al-Saymari F; Marshall ARJ
    Opt Express; 2019 Aug; 27(17):23970-23980. PubMed ID: 31510293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature operation of mid-infrared InAs
    Geum DM; Kim S; Kang S; Kim H; Park H; Rho IP; Ahn SY; Song J; Choi WJ; Yoon E
    Opt Express; 2018 Mar; 26(5):6249-6259. PubMed ID: 29529816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications.
    Lv Z; He G; Qiu C; Fan Y; Wang H; Liu Z
    Opt Express; 2021 May; 29(11):16197-16204. PubMed ID: 34154188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low dark current density extended short-wavelength infrared superlattice photodetector with atomic layer deposited Al
    Li H; Lu L; Yu J; Zheng X; Zhang D; Chen W; Feng Y; Ren G; Zhu L
    Appl Opt; 2023 Oct; 62(30):7960-7965. PubMed ID: 38038088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light.
    Giggenbach D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise.
    Ding J; Li M; Tang M; Li Y; Song Y
    Opt Lett; 2013 Sep; 38(18):3488-91. PubMed ID: 24104795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance infrared photodetectors based on InAs/InAsSb/AlAsSb superlattice for 3.5 µm cutoff wavelength spectra.
    Jiang J; Wang G; Wu D; Xu Y; Chang F; Zhou W; Li N; Jiang D; Hao H; Cui S; Chen W; Xu X; Ni H; Ding Y; Niu ZC
    Opt Express; 2022 Oct; 30(21):38208-38215. PubMed ID: 36258387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive SPAD-Based Receiver for Dimming Control in LiFi Networks.
    Hijazi M; Huang S; Safari M
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere.
    Ata Y; Baykal Y; Gökçe MC
    Appl Opt; 2018 Aug; 57(24):7006-7011. PubMed ID: 30129592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bit error rate of pulse position modulated optical wireless communication links in oceanic turbulence.
    Baykal Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1627-1632. PubMed ID: 30182998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Anodic Vulcanization-Pretreated Gated P
    Sun J; Li N; Jia QX; Zhang X; Jiang DW; Wang GW; Niu ZC
    Nanoscale Res Lett; 2021 May; 16(1):98. PubMed ID: 34052936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5 Gbps optical wireless communication using commercial SPAD array receivers.
    Huang S; Chen C; Bian R; Haas H; Safari M
    Opt Lett; 2022 May; 47(9):2294-2297. PubMed ID: 35486783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical wireless APD receivers in 0.35 µm HV CMOS technology with large detection area.
    Milovančev D; Brandl P; Jukić T; Steindl B; Vokić N; Zimmermann H
    Opt Express; 2019 Apr; 27(9):11930-11945. PubMed ID: 31052741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.