These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37132846)

  • 1. Random spherical microlens array fabricated by elliptical vibration diamond cutting and molding.
    Zhang J; Ma S; Tan W; Liu M; Chen X; Xiao J; Xu J
    Appl Opt; 2023 May; 62(13):3445-3453. PubMed ID: 37132846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Double-Sided Random Microlens Array Used for Laser Beam Homogenization.
    Yuan W; Xu C; Xue L; Pang H; Cao A; Fu Y; Deng Q
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34207625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Random Microlens Array for Laser Beam Homogenization with High Efficiency.
    Xue L; Pang Y; Liu W; Liu L; Pang H; Cao A; Shi L; Fu Y; Deng Q
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32214035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization.
    Zhang F; Yang Q; Bian H; Wang S; Li M; Hou X; Chen F
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injection Compression Molded Microlens Arrays for Hyperspectral Imaging.
    Roeder M; Drexler M; Rothermel T; Meissner T; Guenther T; Zimmermann A
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random Silica-Glass Microlens Arrays Based on the Molding Technology of Photocurable Nanocomposites.
    Zhang H; Li F; Song H; Liu Y; Huang L; Zhao S; Xiong Z; Wang Z; Dong Y; Liu H
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19230-19240. PubMed ID: 37039331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the machinability of polycrystalline ZnSe by elliptical vibration diamond cutting.
    Ma S; Lu Y; Fu Y; Li X; Lai J; Zhang J; Chen X; Xiao J; Xu J
    Opt Express; 2024 Jan; 32(1):482-498. PubMed ID: 38175077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Deformation Behavior of Glass in High-temperature Molding for Massive Unit Microlens Arrays.
    Wang G; Zhou T; Sun X; Gao L; Yao X; Zhao B; Guo W
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):43038-43048. PubMed ID: 39082273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study on the Material Removal Characteristics and Damage Mechanism of Lapping for Pressureless Sintered Silicon Carbide (SSiC) Microlens Cavity.
    Zhou T; Li Z; Guo W; Liu P; Zhao B; Wang X
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera.
    Li L; Yi AY
    Appl Opt; 2012 Apr; 51(12):1843-52. PubMed ID: 22534888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array.
    Xie J; Zhou T; Ruan B; Du Y; Wang X
    Appl Opt; 2017 Aug; 56(23):6622-6630. PubMed ID: 29047954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Superhydrophobic Microlens Arrays for Humid Outdoor Environment Applications.
    Luan S; Xu P; Zhang Y; Xue L; Song Y; Gui C
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53433-53441. PubMed ID: 36394606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of High Precision Silicon Spherical Microlens Arrays by Hot Embossing Process.
    Sun Q; Tang J; Shen L; Lan J; Shen Z; Xiao J; Chen X; Zhang J; Wu Y; Xu J; Wang X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication of a glass microlens array using a vitreous carbon mold.
    Kim YK; Ju JH; Kim SM
    Opt Express; 2018 Jun; 26(12):14936-14944. PubMed ID: 30114798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.
    Zhang L; Zhou W; Naples NJ; Yi AY
    Appl Opt; 2018 May; 57(13):3598-3605. PubMed ID: 29726537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutting depth-oriented ductile machining of infrared micro-lens arrays by elliptical vibration cutting.
    Zheng Z; Huang K; Lin C; Huang W; Zhang J; Chen X; Xiao J; Xu J
    Opt Express; 2023 Sep; 31(20):31993-32009. PubMed ID: 37859012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated microfluidic platforms for creating microlens array.
    Chen PC; Chang YP; Zhang RH; Wu CC; Tang GR
    Opt Express; 2017 Jul; 25(14):16101-16115. PubMed ID: 28789118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Surface Integrity of Selective Laser Melting Additively Manufactured AlSi10Mg Alloy under Ultrasonic Elliptical Vibration-Assisted Ultra-Precision Cutting.
    Tan R; Zhao X; Liu Q; Guo X; Lin F; Yang L; Sun T
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.