These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37132859)

  • 21. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss.
    Napierała M; Nasilowski T; Bereś-Pawlik E; Mergo P; Berghmans F; Thienpont H
    Opt Express; 2011 Nov; 19(23):22628-36. PubMed ID: 22109143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-loss single-mode modified conjoined tube hollow-core fiber.
    Shaha KSR; Khaleque A
    Appl Opt; 2021 Jul; 60(21):6243-6250. PubMed ID: 34613290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and analysis of trench-assisted dual-mode multi-core fiber with large-mode-field-area.
    Zhang Y; Lian Y; Wang Y; Yang M; Wang J; Luan N; Wang Y; Lu Z
    Appl Opt; 2021 Jun; 60(16):4698-4705. PubMed ID: 34143027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss.
    Han J; Liu E; Liu J
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):533-539. PubMed ID: 31044972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mode area scaling with multi-trench rod-type fibers.
    Jain D; Baskiotis C; Sahu JK
    Opt Express; 2013 Jan; 21(2):1448-55. PubMed ID: 23389126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bend-insensitive lasing characteristics of single-mode, large-mode-area ytterbium-doped photonic crystal fiber.
    Iizawa K; Varshney SK; Tsuchida Y; Saitoh K; Koshiba M
    Opt Express; 2008 Jan; 16(2):579-91. PubMed ID: 18542133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.
    Kashiwagi M; Saitoh K; Takenaga K; Tanigawa S; Matsuo S; Fujimaki M
    Opt Lett; 2012 Apr; 37(8):1292-4. PubMed ID: 22513663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High birefringence, single-polarization, low loss hollow-core anti-resonant fibers.
    Zhao X; Xiang J; Wu X; Li Z
    Opt Express; 2021 Oct; 29(22):36273-36286. PubMed ID: 34809042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers.
    Xing Z; Wang X; Lou S; Tang Z; Jia H; Gu S; Han J
    Opt Lett; 2021 Apr; 46(8):1908-1911. PubMed ID: 33857101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber.
    Liu Y; Zhang F; Zhao N; Lin X; Liao L; Wang Y; Peng J; Li H; Yang L; Dai N; Li J
    Opt Express; 2018 Feb; 26(3):3421-3426. PubMed ID: 29401869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber.
    You Y; Guo H; Hao Y; Wang Z; Liu YG
    Opt Express; 2021 Jul; 29(15):24226-24236. PubMed ID: 34614672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bend performance of leakage channel fibers.
    Wu TW; Dong L; Winful H
    Opt Express; 2008 Mar; 16(6):4278-85. PubMed ID: 18542523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low bending loss few-mode hollow-core anti-resonant fiber with glass-sheet conjoined nested tubes.
    Liu H; Wang Y; Zhou Y; Guan Z; Yu Z; Ling Q; Luo S; Shao J; Huang D; Chen D
    Opt Express; 2022 Jun; 30(12):21833-21842. PubMed ID: 36224895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-low NA step-index large mode area Yb-doped fiber with a germanium doped cladding for high power pulse amplification.
    Sidharthan R; Lin D; Jie Lim K; Li H; Huiting Lim S; Jian Chang C; Men Seng Y; Liang Chua S; Jung Y; Richardson DJ; Yoo S
    Opt Lett; 2020 Jul; 45(14):3828-3831. PubMed ID: 32667295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-trench fiber with four gaps for improved bend performance.
    Sun J; Kang Z; Ji J; Yoo S; Nilsson J; Jian S
    Appl Opt; 2015 Oct; 54(28):8271-4. PubMed ID: 26479595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solid-core photonic bandgap fibers for cladding-pumped Raman amplification.
    Ward B
    Opt Express; 2011 Jun; 19(12):11852-66. PubMed ID: 21716418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-Mode ytterbium-doped Large-Mode-Area photonic bandgap rod fiber amplifier.
    Alkeskjold TT; Laurila M; Scolari L; Broeng J
    Opt Express; 2011 Apr; 19(8):7398-409. PubMed ID: 21503050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 140  μm single-polarization passive fully aperiodic large-pitch fibers operating near 2 μm.
    Darwich D; Sabra M; du Jeu R; Malleville MA; Dauliat R; Jamier R; Benoit A; Schuster K; Roy P
    Appl Opt; 2017 Nov; 56(33):9221-9224. PubMed ID: 29216093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2009 Apr; 17(9):7615-29. PubMed ID: 19399140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of embedded-core hollow optical fiber.
    Guan C; Tian F; Dai Q; Yuan L
    Opt Express; 2011 Oct; 19(21):20069-78. PubMed ID: 21997017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.