These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37132876)

  • 1. Dynamic indoor free-space optical communication enabled by beam steering and beam shaping.
    Liverman S; Trotter CW; Bouchard L; Bialek H; Nguyen T; Natarajan A; Wang AX
    Appl Opt; 2023 Mar; 62(9):2367-2375. PubMed ID: 37132876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam steering in a narrow-beam phosphor down-converted white light visible light communication link using transmitter lens decentering.
    Ahmad F; Biswas R; Raghunathan V
    Appl Opt; 2021 Apr; 60(10):2775-2782. PubMed ID: 33798151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated alignment system for optical wireless communication systems using image recognition.
    Brandl P; Weiss A; Zimmermann H
    Opt Lett; 2014 Jul; 39(13):4045-8. PubMed ID: 24978803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging-based beam steering for free-space optical communication.
    Saghaye Polkoo S; Renshaw CK
    Appl Opt; 2019 May; 58(13):D12-D21. PubMed ID: 31044815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 12 Gbit/s indoor optical wireless communication system with ultrafast beam-steering using tunable VCSEL.
    Wu L; Han Y; Li Z; Zhang Y; Fu HY
    Opt Express; 2022 Apr; 30(9):15049-15059. PubMed ID: 35473236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode.
    Oubei HM; Li C; Park KH; Ng TK; Alouini MS; Ooi BS
    Opt Express; 2015 Aug; 23(16):20743-8. PubMed ID: 26367926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable beam system for non-line-of-sight free-space optical communication.
    Cao Z; Zhang X; Osnabrugge G; Li J; Vellekoop IM; Koonen AMJ
    Light Sci Appl; 2019; 8():69. PubMed ID: 31645917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks.
    Oh CW; Cao Z; Tangdiongga E; Koonen T
    Opt Express; 2016 Aug; 24(17):19211-27. PubMed ID: 27557201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.
    Tan J; Zhao Z; Wang Y; Zhang Z; Liu J; Zhu N
    Opt Express; 2018 Jan; 26(2):2099-2106. PubMed ID: 29401934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 40  Gb/s indoor optical wireless system enabled by a cyclically arranged optical beamsteering receiver.
    Zhang X; Liu Y; Cao Z; Li F; Li Z; Ismaeel R; Brambilla G; Chen Y; Koonen AMJ
    Opt Lett; 2018 Feb; 43(4):723-726. PubMed ID: 29444062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-orbit demonstration of inter-satellite free-space optical stable communication enabled by integrated optical amplification of HPA and LNA.
    Bai Z; Meng J; Su Y; Zheng Y; Chang Z; Wei S; Gao D; Nie W; Meng X; Han J; Xue B; Zhang C; Wang W; Xie X
    Appl Opt; 2023 Aug; 62(23):G18-G25. PubMed ID: 37707059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-efficient half-duplex 10  Gbit/s all-optical indoor optical wireless communication enabled by a low-cost Fabry-Perot laser/photodetector.
    Li C; Zhang X; Tangdiongga E; Dai X; Tsai CT; Wang HY; Xiang Y; Lin GR; Cao Z; Koonen T
    Opt Lett; 2019 Mar; 44(5):1158-1161. PubMed ID: 30821737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive divergence and power for improving connectivity in free-space optical mobile networks.
    LoPresti P; Refai H; Sluss J; Varela-Cuadrado I
    Appl Opt; 2006 Sep; 45(25):6591-7. PubMed ID: 16912800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking Efficiency Improvement According to Incident Beam Size in QPD-Based PAT System for Common Path-Based Full-Duplex FSO Terminals.
    Park S; Yeo CI; Heo YS; Ryu JH; Kang HS; Lee DS; Jang JH
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Beam Divergence Control to Mitigate Scintillation Effect Caused by Pointing Error in Vertical FSO Transmissions.
    Park HM; Hyun YJ; Han SK
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s.
    Wang WC; Wang HY; Lin GR
    Sci Rep; 2018 Sep; 8(1):13142. PubMed ID: 30177772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed duplex optical wireless communication system for indoor personal area networks.
    Wang K; Nirmalathas A; Lim C; Skafidas E
    Opt Express; 2010 Nov; 18(24):25199-216. PubMed ID: 21164867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-user accessible indoor infrared optical wireless communication systems employing VIPA-based 2D optical beam-steering technique.
    Li Z; Zang Z; Wei Z; Han Y; Wu L; Zhao Z; Li M; Fu HY
    Opt Express; 2021 Jun; 29(13):20175-20189. PubMed ID: 34266112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-line-of-sight optical wireless communication system enabled by wavefront shaping for multi-user indoor access.
    Weng H; Wang W; Chen Z; Zhu B; Ni W; Yin M; Lu R; Cao Z; Li Z; Li F
    Opt Lett; 2024 Jun; 49(11):3082-3085. PubMed ID: 38824333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of a transmitter with a 50° divergence angle, 50  Mbps rate, and 476  mW optical power for underwater wireless optical communication based on an engineered diffuser.
    Han B; Yang J; Sun K; Sun Y
    Appl Opt; 2022 May; 61(13):3598-3603. PubMed ID: 36256398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.