These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37132975)

  • 1. Statistical modeling of atmospheric turbulence based on a low-cost experimental setup for measuring
    Carvalho TS; Azzolin CP; Gurgel AF; Carneiro VGA; Giraldi MTMR
    J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):C101-C107. PubMed ID: 37132975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercomparison of flux-, gradient-, and variance-based optical turbulence (
    Pierzyna M; Hartogensis O; Basu S; Saathof R
    Appl Opt; 2024 Jun; 63(16):E107-E119. PubMed ID: 38856605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term measurement and characterization of boundary layer optical turbulence.
    Jellen C; Nelson C; Brownell C; Burkhardt J
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jun; 41(6):B65-B72. PubMed ID: 38856411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turbulence strength
    Saha RK; Salcin E; Kim J; Smith J; Jayasuriya S
    Opt Express; 2022 Oct; 30(22):40854-40870. PubMed ID: 36299011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer.
    Zhang H; Zhu L; Sun G; Zhang K; Xu M; Liu N; Chen D; Wu Y; Cui S; Luo T; Li X; Weng N
    Appl Opt; 2022 Nov; 61(33):9762-9772. PubMed ID: 36606804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of atmospheric coherent length of free-space optical links by using phase fluctuation.
    Li M; Zhang P; Wang T
    Opt Express; 2024 Feb; 32(5):7243-7253. PubMed ID: 38439410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric propagation of space-fractional Gaussian-beam waves in a FSO communication system.
    Khan AN; Younis U; Mehmood MQ; Zubair M
    Opt Express; 2022 Jan; 30(2):1570-1583. PubMed ID: 35209314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation and characterization of atmospheric turbulence in the free atmosphere above the Tibetan Plateau using the Thorpe method.
    Hu X; Wu X; Yang Q; Guo Y; Wang Z; Qing C; Li X; Qian X
    Appl Opt; 2023 Feb; 62(4):1115-1122. PubMed ID: 36821172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground-based synchronous optical instrument for measuring atmospheric visibility and turbulence intensity: theories, design and experiments.
    Han Y; Gao P; Huang J; Zhang T; Zhuang J; Hu M; Wu Y
    Opt Express; 2018 Mar; 26(6):6833-6850. PubMed ID: 29609371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements.
    Bendersky S; Kopeika NS; Blaunstein N
    Appl Opt; 2004 Jul; 43(20):4070-9. PubMed ID: 15285098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Π-ML: a dimensional analysis-based machine learning parameterization of optical turbulence in the atmospheric surface layer.
    Pierzyna M; Saathof R; Basu S
    Opt Lett; 2023 Sep; 48(17):4484-4487. PubMed ID: 37656534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system.
    Wang T; Zhao X; Song Y; Wang J; Luan Y; Li Y; Chang S
    Appl Opt; 2022 Jan; 61(2):439-445. PubMed ID: 35200881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the atmospheric refractive index structure parameter using macrometeorological observations.
    Hegde R; Anand N; Satheesh SK; Krishna Moorthy K
    Appl Opt; 2024 Jun; 63(16):E10-E17. PubMed ID: 38856587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and Analysis of Mie-Scattering Lidar-Measuring Atmospheric Turbulence Profile.
    Lu Y; Mao J; Zhang Y; Zhao H; Zhou C; Gong X; Wang Q; Zhang Y
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulence strength estimation from an arbitrary set of atmospherically degraded images.
    Zamek S; Yitzhaky Y
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3106-13. PubMed ID: 17106465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new optical fiber dew point humidity sensor based on the virtual instrument.
    Tan C; Huang X; Lei H; Zhang L; Chen J; Meng H
    Rev Sci Instrum; 2019 Jan; 90(1):015115. PubMed ID: 30709163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting atmospheric turbulence conditions from prior environmental parameters using artificial neural networks.
    Grose MG; Watson EA
    Appl Opt; 2023 May; 62(13):3370-3379. PubMed ID: 37132837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effect of turbulence and aerosol on free-space optical links.
    Libich J; Perez J; Zvanovec S; Ghassemlooy Z; Nebuloni R; Capsoni C
    Appl Opt; 2017 Jan; 56(2):336-341. PubMed ID: 28085871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.