These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37133029)

  • 1. Method of high-precision free-space distance measurement for noncooperative targets.
    Hou Y; Kang J; Yue J; Li H; Xue T; Wu B
    J Opt Soc Am A Opt Image Sci Vis; 2023 Mar; 40(3):531-537. PubMed ID: 37133029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method of high-precision spatial distance measurement based on optical-carried microwave interference.
    Hou Y; Kang J; Yue J; Li H; Xue T; Wu B
    Opt Express; 2022 May; 30(11):18762-18771. PubMed ID: 36221670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave Absolute Distance Measurement Method with Ten-Micron-Level Accuracy and Meter-Level Range Based on Frequency Domain Interferometry.
    Tang L; Jia X; Ma H; Liu S; Chen Y; Tao T; Chen L; Wu J; Li C; Wang X; Weng J
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Precision Real-Time Pose Measurement Method for the Primary Lens of Large Aperture Space Telescope Based on Laser Ranging.
    Shi H; Du J; Wang L; Bian J; Gao G; Liu D; Fan B; Yang H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous detection of the distance and direction for a noncooperative target based on the microwave photonic radar.
    Wang Y; Hou X; Li T; He Z; Wang D; Yang F; Zhou T; Rong L
    Opt Express; 2021 Sep; 29(20):31561-31573. PubMed ID: 34615247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Fiber-Optic Optical Coherence Ranging System Based on Laser Frequency Scanning Interferometry.
    Zhou Y; Yuan Y; Su M
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FSI-based non-cooperative target absolute distance measurement method using PLL correction for the influence of a nonlinear clock.
    Lu C; Xiang Y; Gan Y; Liu B; Chen F; Liu X; Liu G
    Opt Lett; 2018 May; 43(9):2098-2101. PubMed ID: 29714755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time high-precision FMCW laser range extraction method based on a hardware multiplier array.
    Zehao Y; Cheng L; Guodong L; Yu G; Binghui L
    Appl Opt; 2023 Mar; 62(8):1902-1906. PubMed ID: 37133072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Targetless Method for Simultaneously Measuring Three-Degree-of-Freedom Angular Motion Errors with Digital Speckle Pattern Interferometry.
    Shi L; Wu S; Yan M; Niu H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of Distance Measurement Based on Dispersive Interferometry Using Femtosecond Optical Frequency Comb.
    Niu Q; Song M; Zheng J; Jia L; Liu J; Ni L; Nian J; Cheng X; Zhang F; Qu X
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel beam generation method for a high-precision roll angle measurement with a long working distance.
    Ren W; Cui J; Tan J
    Opt Express; 2020 Nov; 28(23):34489-34500. PubMed ID: 33182917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of glass thickness and refractive index based on spectral interference technology.
    Xue K; Wang J; Zhao Y; Xiao Z
    Appl Opt; 2021 Sep; 60(26):7983-7988. PubMed ID: 34613058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-precision absolute distance and vibration measurement with frequency scanned interferometry.
    Yang HJ; Deibel J; Nyberg S; Riles K
    Appl Opt; 2005 Jul; 44(19):3937-44. PubMed ID: 16004038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.
    Wu H; Sheng S; Huang Z; Zhao S; Wang H; Sun Z; Xu X
    Opt Express; 2013 Feb; 21(4):4005-16. PubMed ID: 23481935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement by laser Doppler interferometry of intraocular distances in humans and chicks with a precision of better than ±20 µm.
    Schmid GF; Petrig BL; Riva CE; Shin KH; Stone RA; Mendel MJ; Laties AM
    Appl Opt; 1996 Jul; 35(19):3358-61. PubMed ID: 21102722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method.
    Li X; Duan F; Fu X; Bao R; Jiang J; Zhang C
    Appl Opt; 2022 Apr; 61(11):3150-3155. PubMed ID: 35471292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line-scan spectrum-encoded imaging by dual-comb interferometry.
    Wang C; Deng Z; Gu C; Liu Y; Luo D; Zhu Z; Li W; Zeng H
    Opt Lett; 2018 Apr; 43(7):1606-1609. PubMed ID: 29601041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ranging system based on optical carrier-based microwave interferometry.
    Ding A; Wu B; Hou Y; Yue J
    Appl Opt; 2021 Oct; 60(29):9095-9100. PubMed ID: 34623991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast template matching method in white-light scanning interferometry for 3D micro-profile measurement.
    Huang Y; Gao J; Zhang L; Deng H; Chen X
    Appl Opt; 2020 Feb; 59(4):1082-1091. PubMed ID: 32225244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement.
    Zhu Z; Xu G; Ni K; Zhou Q; Wu G
    Opt Express; 2018 Mar; 26(5):5747-5757. PubMed ID: 29529776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.