These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37133094)
1. Smoothing tool design and performance during subaperture glass polishing. Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094 [TBL] [Abstract][Full Text] [Related]
2. Theoretical and experimental comparisons of the smoothing effects for different multi-layer polishing tools during computer-controlled optical surfacing. Li X; Wei C; Zhang S; Xu W; Shao J Appl Opt; 2019 Jun; 58(16):4406-4413. PubMed ID: 31251250 [TBL] [Abstract][Full Text] [Related]
3. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227 [TBL] [Abstract][Full Text] [Related]
4. Understanding and reducing mid-spatial frequency ripples during hemispherical sub-aperture tool glass polishing. Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B Appl Opt; 2022 Apr; 61(11):3084-3095. PubMed ID: 35471283 [TBL] [Abstract][Full Text] [Related]
5. Smoothing process of conformal vibration polishing for mid-spatial frequency errors: characteristics research and guiding prediction. Liu SW; Wang HX; Zhang QH; Hou J; Chen XH; Xu Q; Wang C Appl Opt; 2021 May; 60(13):3925-3935. PubMed ID: 33983331 [TBL] [Abstract][Full Text] [Related]
6. Effect of workpiece curvature on the tool influence function during hemispherical sub-aperture tool glass polishing. Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B; Gregory M; Hordin T Appl Opt; 2021 Feb; 60(4):1041-1050. PubMed ID: 33690410 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms influencing and prediction of tool influence function spots during hemispherical sub-aperture tool polishing on fused silica. Suratwala T; Menapace J; Steele R; Wong L; Tham G; Ray N; Bauman B; Gregory M; Hordin T Appl Opt; 2021 Jan; 60(1):201-214. PubMed ID: 33362091 [TBL] [Abstract][Full Text] [Related]
8. Surface ripple suppression in subaperture polishing with fragment-type tool paths. Dong Z; Nai W Appl Opt; 2018 Jul; 57(19):5523-5532. PubMed ID: 30117848 [TBL] [Abstract][Full Text] [Related]
9. Modeling the hydrodynamic impact on the tool influence function during hemispherical subaperture optical polishing. Ray NJ; Suratwala T; Menapace J; Wong L; Steele W; Tham G; Bauman B Appl Opt; 2022 Jun; 61(18):5392-5400. PubMed ID: 36256106 [TBL] [Abstract][Full Text] [Related]
10. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres. Suratwala T; Steele R; Feit M; Dylla-Spears R; Desjardin R; Mason D; Wong L; Geraghty P; Miller P; Shen N J Vis Exp; 2014 Dec; (94):. PubMed ID: 25489745 [TBL] [Abstract][Full Text] [Related]
11. Correlation-based smoothing model for optical polishing. Shu Y; Kim DW; Martin HM; Burge JH Opt Express; 2013 Nov; 21(23):28771-82. PubMed ID: 24514389 [TBL] [Abstract][Full Text] [Related]
12. Modeling and in-depth analysis of the mid-spatial-frequency error influenced by actual contact pressure distribution in sub-aperture polishing. Zhang L; Wan S; Li H; Guo H; Wei C; Zhang D; Shao J Opt Express; 2023 Apr; 31(9):14414-14431. PubMed ID: 37157306 [TBL] [Abstract][Full Text] [Related]
13. Parametric smoothing model for visco-elastic polishing tools. Kim DW; Park WH; An HK; Burge JH Opt Express; 2010 Oct; 18(21):22515-26. PubMed ID: 20941150 [TBL] [Abstract][Full Text] [Related]
15. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate. Dong Z; Cheng H; Tam HY Appl Opt; 2014 Apr; 53(11):2455-64. PubMed ID: 24787418 [TBL] [Abstract][Full Text] [Related]
16. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing. Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896 [TBL] [Abstract][Full Text] [Related]
17. Modified dwell time optimization model and its applications in subaperture polishing. Dong Z; Cheng H; Tam HY Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206 [TBL] [Abstract][Full Text] [Related]
18. Fiber-based tools: material removal and mid-spatial frequency error reduction. Shahinian H; Hassan M; Cherukuri H; Mullany BA Appl Opt; 2017 Oct; 56(29):8266-8274. PubMed ID: 29047693 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the smoothing characteristics and shape-retaining ability of conformal vibration polishing and suppression strategy for full-spatial frequency errors of optics. Liu S; Wang H; Hou J; Zhang Q; Chen X; Zhong B; Zhang M Appl Opt; 2022 Jun; 61(17):5019-5030. PubMed ID: 36256179 [TBL] [Abstract][Full Text] [Related]
20. Line contact ring magnetorheological finishing process for precision polishing of optics. Kumar Baghel P; Singh Gavel K; Sayeed Khan G; Kumar R Appl Opt; 2022 Apr; 61(10):2582-2590. PubMed ID: 35471326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]