These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37133143)

  • 1. Calculation of zonal power and astigmatism of a freeform gradient index lens with freeform surfaces.
    Kochan NS; Schmidt GR
    Appl Opt; 2023 Apr; 62(12):2978-2987. PubMed ID: 37133143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeform gradient index progressive addition lens raytrace performance evaluation.
    Kochan NS; Schmidt GR; Moore DT
    Appl Opt; 2022 Jan; 61(3):A28-A36. PubMed ID: 35200763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient representation of freeform gradient-index profiles for non-rotationally symmetric optical design.
    Yang T; Takaki N; Bentley J; Schmidt G; Moore DT
    Opt Express; 2020 May; 28(10):14788-14806. PubMed ID: 32403513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
    Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S
    Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeform gradient-index media: a new frontier in freeform optics.
    Lippman DH; Kochan NS; Yang T; Schmidt GR; Bentley JL; Moore DT
    Opt Express; 2021 Oct; 29(22):36997-37012. PubMed ID: 34809097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-analytical finite ray-tracing through the quadratic symmetric GRIN lens.
    Flynn C; Goncharov AV
    Appl Opt; 2024 Jan; 63(1):290-298. PubMed ID: 38175032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeform gradient index generalized Coddington's equations.
    Kochan NS; Schmidt GR; Moore DT
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):509-516. PubMed ID: 35471372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prescribed irradiance distributions with freeform gradient-index optics.
    Lippman DH; Schmidt GR
    Opt Express; 2020 Sep; 28(20):29132-29147. PubMed ID: 33114818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison and applications of spherocylindrical, toroidal, and ellipsoidal surfaces for the correction of astigmatism in spectacle lenses.
    Xiang H; Li N; Gao J; Zheng G; Chen J; Wang C; Zhuang S
    Opt Express; 2020 Jan; 28(2):1745-1757. PubMed ID: 32121881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.
    Yang T; Cheng D; Wang Y
    Opt Express; 2018 Mar; 26(6):7751-7770. PubMed ID: 29609326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer.
    Chen L; Gao Z; Ye J; Cao X; Xu N; Yuan Q
    Opt Express; 2019 Sep; 27(18):25994-26013. PubMed ID: 31510461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polychromatic annular folded lenses using freeform gradient-index optics.
    Lippman DH; Chou R; Desai AX; Kochan NS; Yang T; Schmidt GR; Bentley JL; Moore DT
    Appl Opt; 2022 Jan; 61(3):A1-A9. PubMed ID: 35200760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated freeform imaging system design with generalized ray tracing and simultaneous multi-surface analytic calculation.
    Nie Y; Shafer DR; Ottevaere H; Thienpont H; Duerr F
    Opt Express; 2021 May; 29(11):17227-17245. PubMed ID: 34154269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of nodal aberration properties in off-axis freeform system design.
    Shi H; Jiang H; Zhang X; Wang C; Liu T
    Appl Opt; 2016 Aug; 55(24):6782-90. PubMed ID: 27557003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces.
    Gong T; Jin G; Zhu J
    Opt Express; 2017 May; 25(9):10663-10676. PubMed ID: 28468437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of aberration fields for general optical systems with freeform surfaces.
    Fuerschbach K; Rolland JP; Thompson KP
    Opt Express; 2014 Nov; 22(22):26585-606. PubMed ID: 25401809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision analysis of aberration contribution of Zernike freeform surface terms for non-zero field of view.
    Zhang S; Zhao X; Li D; Feng H; Zhao S; Wang L; Zhang X
    Opt Express; 2024 Jan; 32(3):3167-3183. PubMed ID: 38297544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General formula to design a freeform singlet free of spherical aberration and astigmatism.
    González-Acuña RG; Chaparro-Romo HA; Gutiérrez-Vega JC
    Appl Opt; 2019 Feb; 58(4):1010-1015. PubMed ID: 30874149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.