These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37133157)

  • 1. Testing randomness of series generated in an optical Bell's experiment.
    Nonaka M; Agüero M; Kovalsky M; Hnilo A
    Appl Opt; 2023 Apr; 62(12):3105-3111. PubMed ID: 37133157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locality, Realism, Ergodicity and Randomness in Bell's Experiment.
    Hnilo AA
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimentally generated randomness certified by the impossibility of superluminal signals.
    Bierhorst P; Knill E; Glancy S; Zhang Y; Mink A; Jordan S; Rommal A; Liu YK; Christensen B; Nam SW; Stevens MJ; Shalm LK
    Nature; 2018 Apr; 556(7700):223-226. PubMed ID: 29643486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weak randomness impacts the security of reference-frame-independent quantum key distribution.
    Zhang CM; Wang WB; Li HW; Wang Q
    Opt Lett; 2019 Mar; 44(5):1226-1229. PubMed ID: 30821754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random numbers certified by Bell's theorem.
    Pironio S; Acín A; Massar S; de la Giroday AB; Matsukevich DN; Maunz P; Olmschenk S; Hayes D; Luo L; Manning TA; Monroe C
    Nature; 2010 Apr; 464(7291):1021-4. PubMed ID: 20393558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a Photonic Demonstration of Device-Independent Quantum Key Distribution.
    Liu WZ; Zhang YZ; Zhen YZ; Li MH; Liu Y; Fan J; Xu F; Zhang Q; Pan JW
    Phys Rev Lett; 2022 Jul; 129(5):050502. PubMed ID: 35960585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Device-independent quantum random-number generation.
    Liu Y; Zhao Q; Li MH; Guan JY; Zhang Y; Bai B; Zhang W; Liu WZ; Wu C; Yuan X; Li H; Munro WJ; Wang Z; You L; Zhang J; Ma X; Fan J; Zhang Q; Pan JW
    Nature; 2018 Oct; 562(7728):548-551. PubMed ID: 30287887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental certification of random numbers via quantum contextuality.
    Um M; Zhang X; Zhang J; Wang Y; Yangchao S; Deng DL; Duan LM; Kim K
    Sci Rep; 2013; 3():1627. PubMed ID: 23568082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Low-Latency Device-Independent Quantum Randomness.
    Zhang Y; Shalm LK; Bienfang JC; Stevens MJ; Mazurek MD; Nam SW; Abellán C; Amaya W; Mitchell MW; Fu H; Miller CA; Mink A; Knill E
    Phys Rev Lett; 2020 Jan; 124(1):010505. PubMed ID: 31976704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trading Locality for Time: Certifiable Randomness from Low-Depth Circuits.
    Coudron M; Stark J; Vidick T
    Commun Math Phys; 2021; 382(1):49-86. PubMed ID: 33746232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations.
    Nie YQ; Huang L; Liu Y; Payne F; Zhang J; Pan JW
    Rev Sci Instrum; 2015 Jun; 86(6):063105. PubMed ID: 26133826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Countermeasure for security loophole caused by asymmetric correlations of reference frame independent quantum key distribution with fewer quantum states.
    Lim K; Choi BS; Baek JH; Kim M; Choe JS; Kim KJ; Ko YH; Youn CJ
    Opt Express; 2021 Jun; 29(12):18966-18975. PubMed ID: 34154140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole.
    Liu Y; Yuan X; Li MH; Zhang W; Zhao Q; Zhong J; Cao Y; Li YH; Chen LK; Li H; Peng T; Chen YA; Peng CZ; Shi SC; Wang Z; You L; Ma X; Fan J; Zhang Q; Pan JW
    Phys Rev Lett; 2018 Jan; 120(1):010503. PubMed ID: 29350962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator.
    Guo X; Liu R; Li P; Cheng C; Wu M; Guo Y
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum generators of random numbers.
    Jacak MM; Jóźwiak P; Niemczuk J; Jacak JE
    Sci Rep; 2021 Aug; 11(1):16108. PubMed ID: 34373502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Statistical Testing of Quantum Random Number Generators.
    Martínez AC; Solis A; Díaz Hernández Rojas R; U'Ren AB; Hirsch JG; Pérez Castillo I
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast quantum random number generation based on quantum phase fluctuations.
    Xu F; Qi B; Ma X; Xu H; Zheng H; Lo HK
    Opt Express; 2012 May; 20(11):12366-77. PubMed ID: 22714224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. True randomness from an incoherent source.
    Qi B
    Rev Sci Instrum; 2017 Nov; 88(11):113101. PubMed ID: 29195344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source-device-independent heterodyne-based quantum random number generator at 17 Gbps.
    Avesani M; Marangon DG; Vallone G; Villoresi P
    Nat Commun; 2018 Dec; 9(1):5365. PubMed ID: 30560900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.
    Stipčević M; Ursin R
    Sci Rep; 2015 Jun; 5():10214. PubMed ID: 26057576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.