These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37133191)
1. Sparse Lissajous scanning reflectance confocal microscope with an adjustable field of view and fast iterative Fourier filtering reconstruction. Coleal CN; Hudson WA; Wilson JW J Opt Soc Am A Opt Image Sci Vis; 2023 May; 40(5):942-954. PubMed ID: 37133191 [TBL] [Abstract][Full Text] [Related]
2. Frequency selection rule for the HDHF Lissajous scanning imaging with a low-voltage one axis actuated PZT scanner based on an asymmetric fiber cantilever. Wu T; Chen Z; Liu Y; Sheng Q; Lu Y; Wang J; He C; Shi Y Opt Express; 2024 Jan; 32(2):2774-2785. PubMed ID: 38297798 [TBL] [Abstract][Full Text] [Related]
3. Resolution adjustable Lissajous scanning with piezoelectric MEMS mirrors. Zhang Y; Liu Y; Wang L; Su Y; Zhang Y; Yu Z; Zhu W; Wang Y; Wu Z Opt Express; 2023 Jan; 31(2):2846-2859. PubMed ID: 36785289 [TBL] [Abstract][Full Text] [Related]
4. Handheld laser scanning microscope catheter for real-time and Jeon J; Kim H; Jang H; Hwang K; Kim K; Park YG; Jeong KH Biomed Opt Express; 2022 Mar; 13(3):1497-1505. PubMed ID: 35414975 [TBL] [Abstract][Full Text] [Related]
5. 2D Au-Coated Resonant MEMS Scanner for NIR Fluorescence Intraoperative Confocal Microscope. Yao CY; Li B; Qiu Z Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31052229 [TBL] [Abstract][Full Text] [Related]
6. Miniaturized precalibration-based Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography. Wu T; Zhang L; Wang J; Huo W; Lu Y; He C; Liu Y Opt Lett; 2020 Apr; 45(8):2470-2473. PubMed ID: 32287261 [TBL] [Abstract][Full Text] [Related]
7. High-speed forward-viewing optical coherence tomography probe based on Lissajous sampling and sparse reconstruction. Wu X; Ishrak R; Reihanisaransari R; Verma Y; Spring B; Singh K; Reddy R Opt Lett; 2024 Jul; 49(13):3652-3655. PubMed ID: 38950232 [TBL] [Abstract][Full Text] [Related]
8. Partial FOV Center Imaging (PCI): A Robust X-Space Image Reconstruction for Magnetic Particle Imaging. Kurt S; Muslu Y; Saritas EU IEEE Trans Med Imaging; 2020 Nov; 39(11):3441-3450. PubMed ID: 32746094 [TBL] [Abstract][Full Text] [Related]
9. Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns. Makita S; Azuma S; Mino T; Yamaguchi T; Miura M; Yasuno Y Biomed Opt Express; 2022 Oct; 13(10):5212-5230. PubMed ID: 36425618 [TBL] [Abstract][Full Text] [Related]
10. Scanning and Actuation Techniques for Cantilever-Based Fiber Optic Endoscopic Scanners-A Review. Kaur M; Lane PM; Menon C Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401728 [TBL] [Abstract][Full Text] [Related]
11. Trajectory analysis for field free line magnetic particle imaging. Top CB; Güngör A; Ilbey S; Güven HE Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100 [TBL] [Abstract][Full Text] [Related]
12. Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Moon S; Lee SW; Rubinstein M; Wong BJ; Chen Z Opt Express; 2010 Sep; 18(20):21183-97. PubMed ID: 20941015 [TBL] [Abstract][Full Text] [Related]
13. Aliasing-free reduced field-of-view parallel imaging. Jia S; Qiu Z; Zhang L; Wang H; Yang G; Liu X; Liang D; Zheng H Magn Reson Med; 2022 Mar; 87(3):1574-1582. PubMed ID: 34752654 [TBL] [Abstract][Full Text] [Related]
14. Double-flow convolutional neural network for rapid large field of view Fourier ptychographic reconstruction. Sun M; Shao L; Zhu Y; Zhang Y; Wang S; Wang Y; Diao Z; Li D; Mu Q; Xuan L J Biophotonics; 2021 Jun; 14(6):e202000444. PubMed ID: 33583150 [TBL] [Abstract][Full Text] [Related]
15. Real-time Lissajous imaging with a low-voltage 2-axis MEMS scanner based on electrothermal actuation. Tanguy QAA; Gaiffe O; Passilly N; Cote JM; Cabodevila G; Bargiel S; Lutz P; Xie H; Gorecki C Opt Express; 2020 Mar; 28(6):8512-8527. PubMed ID: 32225475 [TBL] [Abstract][Full Text] [Related]
16. Source-detector trajectory optimization in cone-beam computed tomography: a comprehensive review on today's state-of-the-art. Hatamikia S; Biguri A; Herl G; Kronreif G; Reynolds T; Kettenbach J; Russ T; Tersol A; Maier A; Figl M; Siewerdsen JH; Birkfellner W Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35905731 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner. Arabi H; Kamali Asl AR; Ay MR; Zaidi H Phys Med; 2015 Jul; 31(5):510-6. PubMed ID: 25873195 [TBL] [Abstract][Full Text] [Related]
19. Handheld endomicroscope using a fiber-optic harmonograph enables real-time and in vivo confocal imaging of living cell morphology and capillary perfusion. Hwang K; Seo YH; Kim DY; Ahn J; Lee S; Han KH; Lee KH; Jon S; Kim P; Yu KE; Kim H; Kang SH; Jeong KH Microsyst Nanoeng; 2020; 6():72. PubMed ID: 34567682 [TBL] [Abstract][Full Text] [Related]
20. Super-Resolution and Wide-Field-of-View Imaging Based on Large-Angle Deflection with Risley Prisms. Gui C; Wang D; Huang X; Wu C; Chen X; Huang H Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]