These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37133246)

  • 1. Stramenopile-Type Lipid Droplet Protein Functions as a Lipid Droplet Scaffold Protein in the Marine Diatom Phaeodactylum tricornutum.
    Yoneda K; Oishi R; Yoshida M; Matsuda Y; Suzuki I
    Plant Cell Physiol; 2023 Jul; 64(7):803-813. PubMed ID: 37133246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Major Lipid Droplet Protein in a Marine Diatom Phaeodactylum tricornutum.
    Yoneda K; Yoshida M; Suzuki I; Watanabe MM
    Plant Cell Physiol; 2016 Feb; 57(2):397-406. PubMed ID: 26738549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed Genome Editing
    Taparia Y; Dolui AK; Boussiba S; Khozin-Goldberg I
    Front Plant Sci; 2021; 12():784780. PubMed ID: 35058949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Resolution Proteome of Lipid Droplets Isolated from the Pennate Diatom Phaeodactylum tricornutum (Bacillariophyceae) Strain pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation.
    Leyland B; Zarka A; Didi-Cohen S; Boussiba S; Khozin-Goldberg I
    J Phycol; 2020 Dec; 56(6):1642-1663. PubMed ID: 32779202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis LDIP protein locates at a confined area within the lipid droplet surface and favors lipid droplet formation.
    Coulon D; Brocard L; Tuphile K; Bréhélin C
    Biochimie; 2020 Feb; 169():29-40. PubMed ID: 31568826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum.
    Leyland B; Novichkova E; Dolui AK; Jallet D; Daboussi F; Legeret B; Li Z; Li-Beisson Y; Boussiba S; Khozin-Goldberg I
    Plant Physiol; 2024 Jan; 194(2):958-981. PubMed ID: 37801606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise Biogenesis of Subpopulations of Lipid Droplets in Nitrogen Starved
    Jaussaud A; Lupette J; Salvaing J; Jouhet J; Bastien O; Gromova M; Maréchal E
    Front Plant Sci; 2020; 11():48. PubMed ID: 32117386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.
    Gidda SK; Park S; Pyc M; Yurchenko O; Cai Y; Wu P; Andrews DW; Chapman KD; Dyer JM; Mullen RT
    Plant Physiol; 2016 Apr; 170(4):2052-71. PubMed ID: 26896396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum.
    Burch AR; Franz AK
    Bioresour Technol; 2016 Nov; 219():559-565. PubMed ID: 27529521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LET-767 determines lipid droplet protein targeting and lipid homeostasis.
    Fu L; Zhang J; Wang Y; Wu H; Xu X; Li C; Li J; Liu J; Wang H; Jiang X; Li Z; He Y; Liu P; Wu Y; Zou X; Liang B
    J Cell Biol; 2024 Jun; 223(6):. PubMed ID: 38551495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.
    Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W
    Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of two
    Murison V; Hérault J; Côme M; Guinio S; Lebon A; Chamot C; Bénard M; Galas L; Schoefs B; Marchand J; Bardor M; Ulmann L
    Front Plant Sci; 2023; 14():1257500. PubMed ID: 37810403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum.
    Allorent G; Guglielmino E; Giustini C; Courtois F
    Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of lipid droplet-organelle interactions in lipid homeostasis.
    Barbosa AD; Siniossoglou S
    Biochim Biophys Acta Mol Cell Res; 2017 Sep; 1864(9):1459-1468. PubMed ID: 28390906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Mutagenesis and Fluorescence-Based High-Throughput Screening for Enhanced Accumulation of Carotenoids in a Model Marine Diatom Phaeodactylum tricornutum.
    Yi Z; Su Y; Xu M; Bergmann A; Ingthorsson S; Rolfsson O; Salehi-Ashtiani K; Brynjolfsson S; Fu W
    Mar Drugs; 2018 Aug; 16(8):. PubMed ID: 30081564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PUX10 Is a Lipid Droplet-Localized Scaffold Protein That Interacts with CELL DIVISION CYCLE48 and Is Involved in the Degradation of Lipid Droplet Proteins.
    Kretzschmar FK; Mengel LA; Müller AO; Schmitt K; Blersch KF; Valerius O; Braus GH; Ischebeck T
    Plant Cell; 2018 Sep; 30(9):2137-2160. PubMed ID: 30087207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous co-expression of a yeast diacylglycerol acyltransferase (
    Zulu NN; Popko J; Zienkiewicz K; Tarazona P; Herrfurth C; Feussner I
    Biotechnol Biofuels; 2017; 10():187. PubMed ID: 28725267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids.
    Hao X; Chen W; Amato A; Jouhet J; Maréchal E; Moog D; Hu H; Jin H; You L; Huang F; Moosburner M; Allen AE; Gong Y
    New Phytol; 2022 Feb; 233(4):1797-1812. PubMed ID: 34882804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds.
    Pyc M; Cai Y; Gidda SK; Yurchenko O; Park S; Kretzschmar FK; Ischebeck T; Valerius O; Braus GH; Chapman KD; Dyer JM; Mullen RT
    Plant J; 2017 Dec; 92(6):1182-1201. PubMed ID: 29083105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of genomic changes in a CRISPR/Cas9
    Russo MT; Aiese Cigliano R; Sanseverino W; Ferrante MI
    PeerJ; 2018; 6():e5507. PubMed ID: 30310734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.