These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37133814)

  • 1. Progress made in the efficacy and viability of deep-learning-based noise reduction.
    Healy EW; Johnson EM; Pandey A; Wang D
    J Acoust Soc Am; 2023 May; 153(5):2751. PubMed ID: 37133814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A talker-independent deep learning algorithm to increase intelligibility for hearing-impaired listeners in reverberant competing talker conditions.
    Healy EW; Johnson EM; Delfarah M; Wang D
    J Acoust Soc Am; 2020 Jun; 147(6):4106. PubMed ID: 32611178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effectively causal deep learning algorithm to increase intelligibility in untrained noises for hearing-impaired listeners.
    Healy EW; Tan K; Johnson EM; Wang D
    J Acoust Soc Am; 2021 Jun; 149(6):3943. PubMed ID: 34241481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning based segregation algorithm to increase speech intelligibility for hearing-impaired listeners in reverberant-noisy conditions.
    Zhao Y; Wang D; Johnson EM; Healy EW
    J Acoust Soc Am; 2018 Sep; 144(3):1627. PubMed ID: 30424625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker and reverberation.
    Healy EW; Delfarah M; Johnson EM; Wang D
    J Acoust Soc Am; 2019 Mar; 145(3):1378. PubMed ID: 31067936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algorithm to increase intelligibility for hearing-impaired listeners in the presence of a competing talker.
    Healy EW; Delfarah M; Vasko JL; Carter BL; Wang D
    J Acoust Soc Am; 2017 Jun; 141(6):4230. PubMed ID: 28618817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech-cue transmission by an algorithm to increase consonant recognition in noise for hearing-impaired listeners.
    Healy EW; Yoho SE; Wang Y; Apoux F; Wang D
    J Acoust Soc Am; 2014 Dec; 136(6):3325. PubMed ID: 25480077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling binaural unmasking and the intelligibility of speech in noise and reverberation for normal-hearing and hearing-impaired listeners.
    Vicente T; Buchholz JM; Lavandier M
    J Acoust Soc Am; 2021 Nov; 150(5):3275. PubMed ID: 34852607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech quality evaluation of a sparse coding shrinkage noise reduction algorithm with normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2015 Sep; 327():175-85. PubMed ID: 26232529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algorithm to improve speech recognition in noise for hearing-impaired listeners.
    Healy EW; Yoho SE; Wang Y; Wang D
    J Acoust Soc Am; 2013 Oct; 134(4):3029-38. PubMed ID: 24116438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning based speaker separation and dereverberation can generalize across different languages to improve intelligibility.
    Healy EW; Johnson EM; Delfarah M; Krishnagiri DS; Sevich VA; Taherian H; Wang D
    J Acoust Soc Am; 2021 Oct; 150(4):2526. PubMed ID: 34717521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A causal and talker-independent speaker separation/dereverberation deep learning algorithm: Cost associated with conversion to real-time capable operation.
    Healy EW; Taherian H; Johnson EM; Wang D
    J Acoust Soc Am; 2021 Nov; 150(5):3976. PubMed ID: 34852625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring speech intelligibility for hearing aid users with deep learning.
    Diehl PU; Singer Y; Zilly H; Schönfeld U; Meyer-Rachner P; Berry M; Sprekeler H; Sprengel E; Pudszuhn A; Hofmann VM
    Sci Rep; 2023 Feb; 13(1):2719. PubMed ID: 36792797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of selective consonant amplification on sentence recognition in noise by hearing-impaired listeners.
    Saripella R; Loizou PC; Thibodeau L; Alford JA
    J Acoust Soc Am; 2011 Nov; 130(5):3028-37. PubMed ID: 22087930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of audibility on better-ear glimpsing as a function of frequency in normal-hearing and hearing-impaired listeners.
    Rana B; Buchholz JM
    J Acoust Soc Am; 2018 Apr; 143(4):2195. PubMed ID: 29716302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech reception by listeners with real and simulated hearing impairment: effects of continuous and interrupted noise.
    Desloge JG; Reed CM; Braida LD; Perez ZD; Delhorne LA
    J Acoust Soc Am; 2010 Jul; 128(1):342-59. PubMed ID: 20649229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.