These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 37133870)
1. Dendritic Cells as a Nexus for the Development of Multiple Sclerosis and Models of Disease. Alakhras NS; Kaplan MH Adv Biol (Weinh); 2023 Jul; 7(7):e2300073. PubMed ID: 37133870 [TBL] [Abstract][Full Text] [Related]
2. Dendritic cells and multiple sclerosis: disease, tolerance and therapy. Mohammad MG; Hassanpour M; Tsai VW; Li H; Ruitenberg MJ; Booth DW; Serrats J; Hart PH; Symonds GP; Sawchenko PE; Breit SN; Brown DA Int J Mol Sci; 2012 Dec; 14(1):547-62. PubMed ID: 23271370 [TBL] [Abstract][Full Text] [Related]
3. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. Rostami A; Ciric B J Neurol Sci; 2013 Oct; 333(1-2):76-87. PubMed ID: 23578791 [TBL] [Abstract][Full Text] [Related]
4. Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Xie ZX; Zhang HL; Wu XJ; Zhu J; Ma DH; Jin T Mediators Inflamm; 2015; 2015():513295. PubMed ID: 25705093 [TBL] [Abstract][Full Text] [Related]
5. The role of dendritic cells in multiple sclerosis. Wu GF; Laufer TM Curr Neurol Neurosci Rep; 2007 May; 7(3):245-52. PubMed ID: 17488591 [TBL] [Abstract][Full Text] [Related]
6. CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Keller CW; Kotur MB; Mundt S; Dokalis N; Ligeon LA; Shah AM; Prinz M; Becher B; Münz C; Lünemann JD Autophagy; 2021 May; 17(5):1244-1258. PubMed ID: 32401602 [TBL] [Abstract][Full Text] [Related]
7. Dendritic cells in central nervous system autoimmunity. Sie C; Korn T Semin Immunopathol; 2017 Feb; 39(2):99-111. PubMed ID: 27888330 [TBL] [Abstract][Full Text] [Related]
8. Neuronal injury in chronic CNS inflammation. Zindler E; Zipp F Best Pract Res Clin Anaesthesiol; 2010 Dec; 24(4):551-62. PubMed ID: 21619866 [TBL] [Abstract][Full Text] [Related]
9. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Lopes Pinheiro MA; Kooij G; Mizee MR; Kamermans A; Enzmann G; Lyck R; Schwaninger M; Engelhardt B; de Vries HE Biochim Biophys Acta; 2016 Mar; 1862(3):461-71. PubMed ID: 26527183 [TBL] [Abstract][Full Text] [Related]
10. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Piacente F; Bottero M; Benzi A; Vigo T; Uccelli A; Bruzzone S; Ferrara G Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457169 [TBL] [Abstract][Full Text] [Related]
11. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Elieh-Ali-Komi D; Cao Y Clin Rev Allergy Immunol; 2017 Jun; 52(3):436-445. PubMed ID: 28025778 [TBL] [Abstract][Full Text] [Related]
12. Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation. Mendez-Huergo SP; Maller SM; Farez MF; Mariño K; Correale J; Rabinovich GA Cytokine Growth Factor Rev; 2014 Jun; 25(3):247-55. PubMed ID: 24684768 [TBL] [Abstract][Full Text] [Related]
13. Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Forte M; Gold BG; Marracci G; Chaudhary P; Basso E; Johnsen D; Yu X; Fowlkes J; Rahder M; Stem K; Bernardi P; Bourdette D Proc Natl Acad Sci U S A; 2007 May; 104(18):7558-63. PubMed ID: 17463082 [TBL] [Abstract][Full Text] [Related]
14. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. Shin S; Walz KA; Archambault AS; Sim J; Bollman BP; Koenigsknecht-Talboo J; Cross AH; Holtzman DM; Wu GF J Neuroimmunol; 2014 Jun; 271(1-2):8-17. PubMed ID: 24794230 [TBL] [Abstract][Full Text] [Related]
15. Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Wang D; Ayers MM; Catmull DV; Hazelwood LJ; Bernard CC; Orian JM Glia; 2005 Aug; 51(3):235-40. PubMed ID: 15812814 [TBL] [Abstract][Full Text] [Related]
16. A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. Melzer N; Meuth SG; Torres-Salazar D; Bittner S; Zozulya AL; Weidenfeller C; Kotsiari A; Stangel M; Fahlke C; Wiendl H PLoS One; 2008 Sep; 3(9):e3149. PubMed ID: 18773080 [TBL] [Abstract][Full Text] [Related]
17. Effectors of demyelination and remyelination in the CNS: implications for multiple sclerosis. Rodriguez M Brain Pathol; 2007 Apr; 17(2):219-29. PubMed ID: 17388953 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo models of multiple sclerosis. van der Star BJ; Vogel DY; Kipp M; Puentes F; Baker D; Amor S CNS Neurol Disord Drug Targets; 2012 Aug; 11(5):570-88. PubMed ID: 22583443 [TBL] [Abstract][Full Text] [Related]
19. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Greter M; Heppner FL; Lemos MP; Odermatt BM; Goebels N; Laufer T; Noelle RJ; Becher B Nat Med; 2005 Mar; 11(3):328-34. PubMed ID: 15735653 [TBL] [Abstract][Full Text] [Related]
20. Delineating the Role of Toll-Like Receptors in the Neuro-inflammation Model EAE. Fallarino F; Gargaro M; Mondanell G; Downer EJ; Hossain MJ; Gran B Methods Mol Biol; 2016; 1390():383-411. PubMed ID: 26803641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]