These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37133924)

  • 1. Complex dynamics in adaptive phase oscillator networks.
    Jüttner B; Martens EA
    Chaos; 2023 May; 33(5):. PubMed ID: 37133924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.
    Papadopoulos L; Kim JZ; Kurths J; Bassett DS
    Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos in Kuramoto oscillator networks.
    Bick C; Panaggio MJ; Martens EA
    Chaos; 2018 Jul; 28(7):071102. PubMed ID: 30070510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators.
    Burylko O; Martens EA; Bick C
    Chaos; 2022 Sep; 32(9):093109. PubMed ID: 36182374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter.
    Chen B; Engelbrecht JR; Mirollo R
    Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks.
    Smith LD; Gottwald GA
    Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary mixtures of locally coupled mobile oscillators.
    Paulo G; Tasinkevych M
    Phys Rev E; 2021 Jul; 104(1-1):014204. PubMed ID: 34412317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winner-take-all in a phase oscillator system with adaptation.
    Burylko O; Kazanovich Y; Borisyuk R
    Sci Rep; 2018 Jan; 8(1):416. PubMed ID: 29323149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling.
    Xu C; Wang X; Zheng Z; Cai Z
    Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective dynamics in two populations of noisy oscillators with asymmetric interactions.
    Sonnenschein B; Peron TK; Rodrigues FA; Kurths J; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062910. PubMed ID: 26172775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of synaptic and myelin plasticity on learning in a network of Kuramoto phase oscillators.
    Karimian M; Dibenedetto D; Moerel M; Burwick T; Westra RL; De Weerd P; Senden M
    Chaos; 2019 Aug; 29(8):083122. PubMed ID: 31472483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive rewiring in nonuniform coupled oscillators.
    Haqiqatkhah MM; van Leeuwen C
    Netw Neurosci; 2022 Feb; 6(1):90-117. PubMed ID: 35356195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Oscillatory Neural Autoencoder Based on Frequency Modulation and Multiplexing.
    Soman K; Muralidharan V; Chakravarthy VS
    Front Comput Neurosci; 2018; 12():52. PubMed ID: 30042669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.