These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 37134180)

  • 1. Construction of a Chiral Fluorescent Probe for Tryptophan Enantiomers/Ascorbic Acid Identification.
    Li J; Du N; Guan R; Zhao S
    ACS Appl Mater Interfaces; 2023 May; 15(19):23642-23652. PubMed ID: 37134180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks.
    Zhang X; Wang F; Chen Z
    Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step hydrothermal preparation of chiral carbon quantum dots and enantioselective sensing of glutamine enantiomeric isomers.
    Li X; Wu J; Zhu X
    Luminescence; 2023 Dec; ():. PubMed ID: 38041512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a ratiometric fluorescence nanoprobe for detecting tryptophan enantiomers.
    Heng H; Gu Q; Jin H; Shen P; Wei J; Er X; Sun J
    Talanta; 2024 Feb; 268(Pt 1):125291. PubMed ID: 37837951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying carbon dots with L-phenylalanine for rapid discrimination of tryptophan enantiomers.
    Lang B; Ma W; Liao X; Duan Y; Ren C; Chen H
    Anal Methods; 2024 Jun; 16(24):3907-3916. PubMed ID: 38829128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin.
    Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G
    Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots.
    Jiang W; He R; Lv H; He X; Wang L; Wei Y
    ACS Sens; 2023 Nov; 8(11):4264-4271. PubMed ID: 37997656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated L-Alanine Peptides.
    Fujihara A; Matsuyama H; Tajiri M; Wada Y; Hayakawa S
    Orig Life Evol Biosph; 2017 Jun; 47(2):161-167. PubMed ID: 27271107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paper-based microfluidic system and chiroptical functionalized gold nano-oval for colorimetric detection of L-Tryptophan.
    Karimian M; Dashtian K; Zare-Dorabei R; Norouzi S
    Anal Chim Acta; 2024 Jan; 1285():342022. PubMed ID: 38057059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe
    Sadeghi-Chahnasir F; Amiripour F; Ghasemi S
    Anal Chim Acta; 2024 Jan; 1287():342066. PubMed ID: 38182373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photothermal effect-based chiral sensor for chiral discrimination and sensitive detection.
    Cai W; Shi Y; Liu N; Yin ZZ; Li J; Xu L; Wu D; Kong Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124494. PubMed ID: 38788508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Recognition in Cold Gas-Phase Cluster Ions of Carbohydrates and Tryptophan Probed by Photodissociation.
    Nguyen DT; Fujihara A
    Orig Life Evol Biosph; 2018 Dec; 48(4):395-406. PubMed ID: 30953250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective Glutamic Acid Discrimination and Nanobiological Imaging by Chiral Fluorescent Silicon Nanoparticles.
    Han Y; Kou M; Quan K; Wang J; Zhang H; Ihara H; Takafuji M; Qiu H
    Anal Chem; 2024 Feb; 96(5):2173-2182. PubMed ID: 38261544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaching Tryptophan-Derived Polynorbornene Fluorescent Chemosensors: Synthesis, Characterization, and Sensing Ability for Biomedical Applications as Biomarkers for Detecting Fe
    Sutthasupa S; Pankaew A; Thisan S; Wangngae S; Kumphune S
    Biomacromolecules; 2024 May; 25(5):2875-2889. PubMed ID: 38554086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications.
    Li S; Pei H; He S; Liang H; Guo R; Liu N; Mo Z
    Chem Asian J; 2023 Dec; 18(23):e202300770. PubMed ID: 37819766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Fluorescence Recognition of Free α-Amino Acids by Ion-Type Ammonium Salt-Based Sensors.
    Bai L; Li C; Wei D; Xu C
    J Fluoresc; 2023 Dec; ():. PubMed ID: 38157083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantiomer-selective photolysis of cold gas-phase tryptophan in L-serine clusters with linearly polarized light.
    Fujihara A; Maeda N; Hayakawa S
    Orig Life Evol Biosph; 2014 Apr; 44(2):67-73. PubMed ID: 25351685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enantioselective fluorescent probe for detecting arginine and glutamic acids.
    Zhang B; Zhou F; Yu X; Zhang P; Sun X; Su J; Fan C; Shu W; Dong Q; Zeng C
    Food Chem; 2024 Oct; 455():139976. PubMed ID: 38850978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Electrochemical Signal for Efficient Chiral Recognition by Encapsulating C
    Niu X; Liu Y; Zhao R; Yuan M; Zhao H; Li H; Wang K
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17361-17370. PubMed ID: 38556802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakdown of chiral recognition of amino acids in reduced dimensions.
    Jeong Y; Kim HW; Ku J; Seo J
    Sci Rep; 2020 Sep; 10(1):16166. PubMed ID: 32999433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.