These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3713494)

  • 1. Multiple field strength in vivo T1 and T2 for cerebrospinal fluid protons.
    Hopkins AL; Yeung HN; Bratton CB
    Magn Reson Med; 1986 Apr; 3(2):303-11. PubMed ID: 3713494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR relaxation times of cerebrospinal fluid.
    Condon B; Patterson J; Jenkins A; Wyper D; Hadley D; Grant R; Rowan J; Teasdale G
    J Comput Assist Tomogr; 1987; 11(2):203-7. PubMed ID: 3819116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?
    Bottomley PA; Hardy CJ; Argersinger RE; Allen-Moore G
    Med Phys; 1987; 14(1):1-37. PubMed ID: 3031439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology for the measurement and analysis of relaxation times in proton imaging.
    MacFall JR; Wehrli FW; Breger RK; Johnson GA
    Magn Reson Imaging; 1987; 5(3):209-20. PubMed ID: 3041152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative index of ventricular and extraventricular intracranial CSF volumes using MR imaging.
    Condon BR; Patterson J; Wyper D; Hadley DM; Teasdale G; Grant R; Jenkins A; Macpherson P; Rowan J
    J Comput Assist Tomogr; 1986; 10(5):784-92. PubMed ID: 3745550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of proton relaxation times in vitro.
    Nelson TR; Tung SM
    Magn Reson Imaging; 1987; 5(3):189-99. PubMed ID: 3041151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging relaxation times and gadolinium-DTPA relaxivity values in human cerebrospinal fluid.
    Ibrahim MA; Emerson JF; Cotman CW
    Invest Radiol; 1998 Mar; 33(3):153-62. PubMed ID: 9525754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging and characterization of normal and abnormal intracranial cerebrospinal fluid (CSF) spaces.
    Brant-Zawadzki M; Kelly W; Kjos B; Newton TH; Norman D; Dillon W; Sobel D
    Neuroradiology; 1985; 27(1):3-8. PubMed ID: 3974863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolites in ventricular cerebrospinal fluid detected by proton magnetic resonance spectroscopic imaging.
    Nagae-Poetscher LM; McMahon M; Braverman N; Lawrie WT; Fatemi A; Degaonkar M; Horská A; Pomper MG; Chacko VP; Barker PB
    J Magn Reson Imaging; 2004 Sep; 20(3):496-500. PubMed ID: 15332258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR proton T1 and T2 relaxation times from fresh, in vitro canine tissues at 5.1 MHz.
    Wolf GL; Conard B
    Physiol Chem Phys Med NMR; 1983; 15(1):19-22. PubMed ID: 6316378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.
    Shushakov OA
    Magn Reson Imaging; 1996; 14(7-8):959-60. PubMed ID: 8970122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of periventricular edema in normal-pressure hydrocephalus by measurement of water proton relaxation times.
    Tamaki N; Shirakuni T; Ehara K; Matsumoto S
    J Neurosurg; 1990 Dec; 73(6):864-70. PubMed ID: 2172480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton NMR T1, T2, and T1 rho relaxation studies of native and reconstituted sarcoplasmic reticulum and phospholipid vesicles.
    Deese AJ; Dratz EA; Hymel L; Fleischer S
    Biophys J; 1982 Jan; 37(1):207-16. PubMed ID: 6459803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy.
    Maillet S; Vion-Dury J; Confort-Gouny S; Nicoli F; Lutz NW; Viout P; Cozzone PJ
    Brain Res Brain Res Protoc; 1998 Nov; 3(2):123-34. PubMed ID: 9813277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of MR signal intensities of cerebral perivascular (Virchow-Robin) and subarachnoid spaces.
    Oztürk MH; Aydingöz U
    J Comput Assist Tomogr; 2002; 26(6):902-4. PubMed ID: 12488733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo.
    de Graaf RA; Brown PB; McIntyre S; Nixon TW; Behar KL; Rothman DL
    Magn Reson Med; 2006 Aug; 56(2):386-94. PubMed ID: 16767752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR relaxation of protein and water protons in diamagnetic hemoglobin solutions.
    Eisenstadt M
    Biochemistry; 1985 Jul; 24(14):3407-21. PubMed ID: 4041420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrospinal fluid-tissue exchange revealed by phase alternate labeling with null recovery MRI.
    Li AM; Xu J
    Magn Reson Med; 2022 Mar; 87(3):1207-1217. PubMed ID: 34799860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proton NMR relaxation evaluation of a model of brain oedema fluid.
    Allen PS; Castro ME; Treiber EO; Lunt JA; Boisvert DP
    Phys Med Biol; 1986 Jul; 31(7):699-711. PubMed ID: 3749258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal physiochemical changes during in vitro relaxation time measurements: the cerebrospinal fluid.
    Grant R; Condon B; Moyns S; Patterson J; Hadley D; Teasdale G
    Magn Reson Med; 1988 Apr; 6(4):397-402. PubMed ID: 3132581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.