These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37137177)

  • 1. Efficient conversion of waste-to-SNG via hybrid renewable energy systems for circular economy: Process design, energy, and environmental analysis.
    Kuo PC; Illathukandy B; Sun Z; Aziz M
    Waste Manag; 2023 Jul; 166():1-12. PubMed ID: 37137177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical and Economic Assessment of a High-Quality Syngas Production Process Integrating Oxygen Gasification and Water Electrolysis: The Chinese Case.
    Song G; Wang L; Yao A; Cui X; Xiao J
    ACS Omega; 2021 Oct; 6(42):27851-27864. PubMed ID: 34722985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.
    Perna A; Minutillo M; Lubrano Lavadera A; Jannelli E
    Waste Manag; 2018 Mar; 73():424-438. PubMed ID: 28965703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.
    Agon N; Hrabovský M; Chumak O; Hlína M; Kopecký V; Masláni A; Bosmans A; Helsen L; Skoblja S; Van Oost G; Vierendeels J
    Waste Manag; 2016 Jan; 47(Pt B):246-55. PubMed ID: 26210232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic performance of SNG and power coproduction from MSW with recovery of chemical unreacted gas.
    Fan J; Hong H; Zhang L; Li L; Jin H
    Waste Manag; 2017 Sep; 67():163-170. PubMed ID: 28587806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development.
    Alaedini AH; Tourani HK; Saidi M
    J Environ Manage; 2023 Mar; 329():117077. PubMed ID: 36565498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MSW to synthetic natural gas: System modeling and thermodynamics assessment.
    Zhu L; Zhang L; Fan J; Jiang P; Li L
    Waste Manag; 2016 Feb; 48():257-264. PubMed ID: 26525970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal gasification of waste biomass: process design and life cycle asessment.
    Luterbacher JS; Fröling M; Vogel F; Maréchal F; Tester JW
    Environ Sci Technol; 2009 Mar; 43(5):1578-83. PubMed ID: 19350938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision.
    Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of BioSNG from waste derived syngas: Pilot plant operation and preliminary assessment.
    Materazzi M; Taylor R; Cozens P; Manson-Whitton C
    Waste Manag; 2018 Sep; 79():752-762. PubMed ID: 30343808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Co-Electrolysis and Syngas Methanation for the Direct Production of Synthetic Natural Gas from CO
    Mebrahtu C; Nohl M; Dittrich L; Foit SR; de Haart LGJB; Eichel RA; Palkovits R
    ChemSusChem; 2021 Jun; 14(11):2295-2302. PubMed ID: 33901333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).
    Schildhauer TJ; Biollaz SM
    Chimia (Aarau); 2015; 69(10):603-7. PubMed ID: 26598404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technoeconomic Feasibility of Hydrogen Production from Waste Tires with the Control of CO
    Al-Qadri AA; Ahmed U; Abdul Jameel AG; Zahid U; Ahmad N; Shahbaz M; Nemitallah MA
    ACS Omega; 2022 Dec; 7(51):48075-48086. PubMed ID: 36591192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste-gasification efficiency of a two-stage fluidized-bed gasification system.
    Liu ZS; Lin CL; Chang TJ; Weng WC
    Waste Manag; 2016 Feb; 48():250-256. PubMed ID: 26698684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-gasification of solid waste and lignite - a case study for Western Macedonia.
    Koukouzas N; Katsiadakis A; Karlopoulos E; Kakaras E
    Waste Manag; 2008; 28(7):1263-75. PubMed ID: 17631995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.
    Marculescu C; Cenuşă V; Alexe F
    Waste Manag; 2016 Jan; 47(Pt A):133-40. PubMed ID: 26164851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen production and pollution mitigation: Enhanced gasification of plastic waste and biomass with machine learning & storage for a sustainable future.
    Bin Abu Sofian ADA; Lim HR; Chew KW; Khoo KS; Tan IS; Ma Z; Show PL
    Environ Pollut; 2024 Feb; 342():123024. PubMed ID: 38030108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.
    Evangelisti S; Tagliaferri C; Clift R; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2015 Sep; 43():485-96. PubMed ID: 26116008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.