These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37137192)

  • 1. Optimization of fluid flow in membrane chromatography devices using computational fluid dynamic simulations.
    Roshankhah R; Pelton R; Ghosh R
    J Chromatogr A; 2023 Jun; 1699():464030. PubMed ID: 37137192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A z
    Ghosh R; Chen G; Roshankhah R; Umatheva U; Gatt P
    J Chromatogr A; 2020 Oct; 1629():461453. PubMed ID: 32861093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device.
    Ghosh R; Chen G; Umatheva U; Gatt P
    J Chromatogr A; 2020 May; 1618():460892. PubMed ID: 31992474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column.
    Madadkar P; Sadavarte R; Ghosh R
    Membranes (Basel); 2019 Oct; 9(11):. PubMed ID: 31671843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and high-resolution purification of a PEGylated protein using a z
    Chen G; Pagano J; Yu D; Ghose S; Li Z; Ghosh R
    J Chromatogr A; 2021 Aug; 1652():462375. PubMed ID: 34256267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamic simulation of axial and radial flow membrane chromatography: mechanisms of non-ideality and validation of the zonal rate model.
    Ghosh P; Vahedipour K; Lin M; Vogel JH; Haynes C; von Lieres E
    J Chromatogr A; 2013 Aug; 1305():114-22. PubMed ID: 23885666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume.
    Chen G; Roshankhah R; Ghosh R
    J Chromatogr A; 2021 Jun; 1647():462167. PubMed ID: 33962076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.
    Madadkar P; Nino SL; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Nov; 1035():1-7. PubMed ID: 27656841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
    Yu H; Janiga G; Thévenin D
    Artif Organs; 2016 Apr; 40(4):341-52. PubMed ID: 26526039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated optimization of double heater convective polymerase chain reaction devices based on CFD simulation database and artificial neural network model.
    Hong SH; Shu JI; Wang Y; Baysal O
    Biomed Microdevices; 2021 Mar; 23(2):20. PubMed ID: 33782743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of different packing methods on the hydrodynamic stability of chromatography columns.
    Dorn M; Eschbach F; Hekmat D; Weuster-Botz D
    J Chromatogr A; 2017 Sep; 1516():89-101. PubMed ID: 28818329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump.
    Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics of an electrochemical membrane bioreactor.
    Wang YZ; Wang YK; He CS; Yang HY; Sheng GP; Shen JY; Mu Y; Yu HQ
    Sci Rep; 2015 May; 5():10387. PubMed ID: 25997399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating two process scale chromatography column header designs using CFD.
    Johnson C; Natarajan V; Antoniou C
    Biotechnol Prog; 2014; 30(4):837-44. PubMed ID: 24616438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of artificial intelligence techniques for increasing the prediction performance of important parameters and their optimization in membrane processes: A systematic review.
    Yuan S; Ajam H; Sinnah ZAB; Altalbawy FMA; Abdul Ameer SA; Husain A; Al Mashhadani ZI; Alkhayyat A; Alsalamy A; Zubaid RA; Cao Y
    Ecotoxicol Environ Saf; 2023 Jul; 260():115066. PubMed ID: 37262969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.
    Passos RG; von Sperling M; Ribeiro TB
    Water Sci Technol; 2014; 70(3):569-75. PubMed ID: 25098890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of computational fluid dynamics in inhaler design.
    Ruzycki CA; Javaheri E; Finlay WH
    Expert Opin Drug Deliv; 2013 Mar; 10(3):307-23. PubMed ID: 23289401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 20. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.
    Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.