These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 37137239)
41. Polyphenolic Compounds Extracted and Purified from Torres-Vega J; Gómez-Alonso S; Pérez-Navarro J; Alarcón-Enos J; Pastene-Navarrete E Molecules; 2021 Apr; 26(8):. PubMed ID: 33920316 [TBL] [Abstract][Full Text] [Related]
42. Exploring Phenolic Compounds Extraction from Saffron ( Masala V; Jokić S; Aladić K; Molnar M; Tuberoso CIG Molecules; 2024 Jun; 29(11):. PubMed ID: 38893476 [TBL] [Abstract][Full Text] [Related]
43. Optimization of the extraction process of flavonoids from Trollius ledebouri with natural deep eutectic solvents. Zuo J; Ma P; Geng S; Kong Y; Li X; Fan Z; Zhang Y; Dong A; Zhou Q J Sep Sci; 2022 Feb; 45(3):717-727. PubMed ID: 34845820 [TBL] [Abstract][Full Text] [Related]
44. Extraction optimization, biological activities, and application in O/W emulsion of deep eutectic solvents-based phenolic extracts from olive pomace. Pontes PVA; Czaikoski A; Almeida NA; Fraga S; Rocha LO; Cunha RL; Maximo GJ; Batista EAC Food Res Int; 2022 Nov; 161():111753. PubMed ID: 36192926 [TBL] [Abstract][Full Text] [Related]
45. Extraction and separation of flavonoids from Malus hupehensis using high-speed countercurrent chromatography based on deep eutectic solvent. Cai X; Xiao M; Zou X; Tang J; Huang B; Xue H J Chromatogr A; 2021 Mar; 1641():461998. PubMed ID: 33611114 [TBL] [Abstract][Full Text] [Related]
46. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Lakka A; Grigorakis S; Karageorgou I; Batra G; Kaltsa O; Bozinou E; Lalas S; Makris DP Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31775333 [TBL] [Abstract][Full Text] [Related]
47. Valorization of Sour Cherry Kernels: Extraction of Polyphenols Using Natural Deep Eutectic Solvents (NADESs). Božović D; Dimić I; Teslić N; Mišan A; Pojić M; Stupar A; Mandić A; Milošević S; Zeković Z; Pavlić B Molecules; 2024 Jun; 29(12):. PubMed ID: 38930830 [TBL] [Abstract][Full Text] [Related]
48. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Jiang HL; Yang JL; Shi YP Ultrason Sonochem; 2017 Jan; 34():325-331. PubMed ID: 27773253 [TBL] [Abstract][Full Text] [Related]
49. Ultrasound-assisted extraction of phenolic acids, flavonols, and flavan-3-ols from muscadine grape skins and seeds using natural deep eutectic solvents and predictive modelling by artificial neural networking. Alrugaibah M; Washington TL; Yagiz Y; Gu L Ultrason Sonochem; 2021 Nov; 79():105773. PubMed ID: 34649165 [TBL] [Abstract][Full Text] [Related]
50. Green Method Comparison and Optimization of Anthocyanin Recovery from "Sangiovese" Grape Pomace: A Critical Evaluation of the Design of Experiments Approach. Lianza M; Antognoni F Molecules; 2024 Jun; 29(11):. PubMed ID: 38893553 [TBL] [Abstract][Full Text] [Related]
51. Optimization of Extraction of Bioactive Compounds from Xu Z; Cai Y; Ma Q; Zhao Z; Yang D; Xu X Molecules; 2021 Mar; 26(6):. PubMed ID: 33808811 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of green and efficient deep eutectic solvents as media for extracting alkaloids from lotus leaf. Liu Y; Chen Q; Zhang S; Zhang H; Xu W Biomed Chromatogr; 2022 Mar; 36(3):e5293. PubMed ID: 34873711 [TBL] [Abstract][Full Text] [Related]
54. Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles. Srivastava A; Akoh CC; Yi W; Fischer J; Krewer G J Agric Food Chem; 2007 Apr; 55(7):2705-13. PubMed ID: 17348670 [TBL] [Abstract][Full Text] [Related]
55. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Rodríguez-Martínez B; Ferreira-Santos P; Alfonso IM; Martínez S; Genisheva Z; Gullón B Molecules; 2022 Oct; 27(19):. PubMed ID: 36235183 [TBL] [Abstract][Full Text] [Related]
56. A Green Extraction Process for Polyphenols from Elderberry ( Kaltsa O; Lakka A; Grigorakis S; Karageorgou I; Batra G; Bozinou E; Lalas S; Makris DP Molecules; 2020 Feb; 25(4):. PubMed ID: 32093048 [No Abstract] [Full Text] [Related]
57. Natural Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Total Flavonoid Compounds from Spent Sweet Potato ( Zhang Y; Bian S; Hu J; Liu G; Peng S; Chen H; Jiang Z; Wang T; Ye Q; Zhu H Molecules; 2022 Sep; 27(18):. PubMed ID: 36144716 [TBL] [Abstract][Full Text] [Related]
58. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. Pal CBT; Jadeja GC J Sci Food Agric; 2019 Mar; 99(4):1969-1979. PubMed ID: 30270562 [TBL] [Abstract][Full Text] [Related]
59. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM). Hwang SH; Kwon SH; Wang Z; Kim TH; Kang YH; Lee JY; Lim SS BMC Complement Altern Med; 2016 Aug; 16(1):317. PubMed ID: 27561370 [TBL] [Abstract][Full Text] [Related]
60. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Mansur AR; Song NE; Jang HW; Lim TG; Yoo M; Nam TG Food Chem; 2019 Sep; 293():438-445. PubMed ID: 31151632 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]