These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37137307)
21. Structural basis of mycobacterial inhibition by cyclomarin A. Vasudevan D; Rao SP; Noble CG J Biol Chem; 2013 Oct; 288(43):30883-91. PubMed ID: 24022489 [TBL] [Abstract][Full Text] [Related]
22. In Vivo Trapping of Proteins Interacting with the Chloroplast CLPC1 Chaperone: Potential Substrates and Adaptors. Montandon C; Friso G; Liao JR; Choi J; van Wijk KJ J Proteome Res; 2019 Jun; 18(6):2585-2600. PubMed ID: 31070379 [TBL] [Abstract][Full Text] [Related]
23. Post-translational regulation via Clp protease is critical for survival of Mycobacterium tuberculosis. Raju RM; Jedrychowski MP; Wei JR; Pinkham JT; Park AS; O'Brien K; Rehren G; Schnappinger D; Gygi SP; Rubin EJ PLoS Pathog; 2014 Mar; 10(3):e1003994. PubMed ID: 24603869 [TBL] [Abstract][Full Text] [Related]
24. Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria. Junk L; Schmiedel VM; Guha S; Fischel K; Greb P; Vill K; Krisilia V; van Geelen L; Rumpel K; Kaur P; Krishnamurthy RV; Narayanan S; Shandil RK; Singh M; Kofink C; Mantoulidis A; Biber P; Gmaschitz G; Kazmaier U; Meinhart A; Leodolter J; Hoi D; Junker S; Morreale FE; Clausen T; Kalscheuer R; Weinstabl H; Boehmelt G Nat Commun; 2024 Mar; 15(1):2005. PubMed ID: 38443338 [TBL] [Abstract][Full Text] [Related]
25. Biosynthetic Interrogation of Soil Metagenomes Reveals Metamarin, an Uncommon Cyclomarin Congener with Activity against Li L; MacIntyre LW; Ali T; Russo R; Koirala B; Hernandez Y; Brady SF J Nat Prod; 2021 Apr; 84(4):1056-1066. PubMed ID: 33621083 [TBL] [Abstract][Full Text] [Related]
26. Potent Bactericidal Antimycobacterials Targeting the Chaperone ClpC1 Based on the Depsipeptide Natural Products Ecumicin and Ohmyungsamycin A. Hawkins PME; Hoi DM; Cheung CY; Wang T; Quan D; Sasi VM; Liu DY; Linington RG; Jackson CJ; Oehlers SH; Cook GM; Britton WJ; Clausen T; Payne RJ J Med Chem; 2022 Mar; 65(6):4893-4908. PubMed ID: 35293761 [TBL] [Abstract][Full Text] [Related]
27. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis. Welsch R; Zhou X; Yuan H; Álvarez D; Sun T; Schlossarek D; Yang Y; Shen G; Zhang H; Rodriguez-Concepcion M; Thannhauser TW; Li L Mol Plant; 2018 Jan; 11(1):149-162. PubMed ID: 29155321 [TBL] [Abstract][Full Text] [Related]
28. Interactome Analysis Identifies MSMEI_3879 as a Substrate of Mycolicibacterium smegmatis ClpC1. Ogbonna EC; Anderson HR; Beardslee PC; Bheemreddy P; Schmitz KR Microbiol Spectr; 2023 Aug; 11(4):e0454822. PubMed ID: 37341639 [TBL] [Abstract][Full Text] [Related]
29. Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. Lee H; Suh JW J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):205-12. PubMed ID: 26586403 [TBL] [Abstract][Full Text] [Related]
30. Progression from remodeling to hibernation of ribosomes in zinc-starved mycobacteria. Li Y; Corro JH; Palmer CD; Ojha AK Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19528-19537. PubMed ID: 32723821 [TBL] [Abstract][Full Text] [Related]
31. Interplay between the Hsp90 Chaperone and the HslVU Protease To Regulate the Level of an Essential Protein in Shewanella oneidensis. Honoré FA; Maillot NJ; Méjean V; Genest O mBio; 2019 May; 10(3):. PubMed ID: 31088919 [TBL] [Abstract][Full Text] [Related]
32. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. Bouchnak I; van Wijk KJ J Biol Chem; 2021; 296():100338. PubMed ID: 33497624 [TBL] [Abstract][Full Text] [Related]
33. Crystal structure of the N-terminal domain of MtClpC1 in complex with the anti-mycobacterial natural peptide Lassomycin. Jagdev MK; Tompa DR; Ling LL; Peoples AJ; Dandapat J; Mohapatra C; Lewis K; Vasudevan D Int J Biol Macromol; 2023 Dec; 253(Pt 2):126771. PubMed ID: 37683752 [TBL] [Abstract][Full Text] [Related]
34. Marsee JD; Ridings A; Yu T; Miller JM Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463272 [TBL] [Abstract][Full Text] [Related]
35. Reconstitution of a Mycobacterium tuberculosis proteostasis network highlights essential cofactor interactions with chaperone DnaK. Lupoli TJ; Fay A; Adura C; Glickman MS; Nathan CF Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7947-E7956. PubMed ID: 27872278 [TBL] [Abstract][Full Text] [Related]
36. Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. Sjögren LLE; Tanabe N; Lymperopoulos P; Khan NZ; Rodermel SR; Aronsson H; Clarke AK J Biol Chem; 2014 Apr; 289(16):11318-11330. PubMed ID: 24599948 [TBL] [Abstract][Full Text] [Related]
37. Acyldepsipeptide Antibiotics and a Bioactive Fragment Thereof Differentially Perturb Schmitz KR; Handy EL; Compton CL; Gupta S; Bishai WR; Sauer RT; Sello JK ACS Chem Biol; 2023 Apr; 18(4):724-733. PubMed ID: 32083462 [TBL] [Abstract][Full Text] [Related]
38. BacPROTACs targeting Clp protease: a promising strategy for anti-mycobacterial drug discovery. Bonjorno AF; Pavan AR; Fernandes GFS; Scarim CB; Castagnolo D; Dos Santos JL Front Chem; 2024; 12():1358539. PubMed ID: 38357296 [TBL] [Abstract][Full Text] [Related]