These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 37137317)
1. Uncertainty estimation for deep learning-based pectoral muscle segmentation via Monte Carlo dropout. Klanecek Z; Wagner T; Wang YK; Cockmartin L; Marshall N; Schott B; Deatsch A; Studen A; Hertl K; Jarm K; Krajc M; Vrhovec M; Bosmans H; Jeraj R Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37137317 [No Abstract] [Full Text] [Related]
2. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
3. Application of simultaneous uncertainty quantification for image segmentation with probabilistic deep learning: Performance benchmarking of oropharyngeal cancer target delineation as a use-case. Sahlsten J; Jaskari J; Wahid KA; Ahmed S; Glerean E; He R; Kann BH; Mäkitie A; Fuller CD; Naser MA; Kaski K medRxiv; 2023 Feb; ():. PubMed ID: 36865296 [TBL] [Abstract][Full Text] [Related]
4. Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network. Rampun A; López-Linares K; Morrow PJ; Scotney BW; Wang H; Ocaña IG; Maclair G; Zwiggelaar R; González Ballester MA; Macía I Med Image Anal; 2019 Oct; 57():1-17. PubMed ID: 31254729 [TBL] [Abstract][Full Text] [Related]
5. Deep learning with uncertainty estimation for automatic tumor segmentation in PET/CT of head and neck cancers: impact of model complexity, image processing and augmentation. Huynh BN; Groendahl AR; Tomic O; Liland KH; Knudtsen IS; Hoebers F; van Elmpt W; Dale E; Malinen E; Futsaether CM Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39127060 [No Abstract] [Full Text] [Related]
6. Automatic segmentation of the pectoral muscle based on boundary identification and shape prediction. Guo Y; Zhao W; Li S; Zhang Y; Lu Y Phys Med Biol; 2020 Feb; 65(4):045016. PubMed ID: 31869824 [TBL] [Abstract][Full Text] [Related]
7. Accuracy, uncertainty, and adaptability of automatic myocardial ASL segmentation using deep CNN. Do HP; Guo Y; Yoon AJ; Nayak KS Magn Reson Med; 2020 May; 83(5):1863-1874. PubMed ID: 31729078 [TBL] [Abstract][Full Text] [Related]
8. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning. Gudhe NR; Kosma VM; Behravan H; Mannermaa A BMC Med Imaging; 2023 Oct; 23(1):162. PubMed ID: 37858043 [TBL] [Abstract][Full Text] [Related]
9. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. Yin K; Yan S; Song C; Zheng B Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698 [TBL] [Abstract][Full Text] [Related]
10. Automatic extraction of pectoral muscle in the MLO view of mammograms. Feudjio CK; Klein J; Tiedeu A; Colot O Phys Med Biol; 2013 Dec; 58(23):8493-515. PubMed ID: 24240510 [TBL] [Abstract][Full Text] [Related]
18. Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation. Maruccio FC; Eppinga W; Laves MH; Navarro RF; Salvi M; Molinari F; Papaconstadopoulos P Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38171012 [No Abstract] [Full Text] [Related]
19. Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network. Kim YC; Kim KR; Choe YH Comput Methods Programs Biomed; 2020 Mar; 185():105150. PubMed ID: 31671341 [TBL] [Abstract][Full Text] [Related]
20. Research on Pectoral Muscle Segmentation Algorithm of CT Image Based on Deep Learning. Wang Y; Zhou P; Zhao X Stud Health Technol Inform; 2023 Nov; 308():207-215. PubMed ID: 38007742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]