These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37137317)

  • 21. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms.
    Mustra M; Grgic M; Rangayyan RM
    Med Biol Eng Comput; 2016 Jul; 54(7):1003-24. PubMed ID: 26546074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality control.
    Roy AG; Conjeti S; Navab N; Wachinger C;
    Neuroimage; 2019 Jul; 195():11-22. PubMed ID: 30926511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer-aided identification of the pectoral muscle in digitized mammograms.
    Camilus KS; Govindan VK; Sathidevi PS
    J Digit Imaging; 2010 Oct; 23(5):562-80. PubMed ID: 19816741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts.
    Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA
    Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images.
    Karimi D; Zeng Q; Mathur P; Avinash A; Mahdavi S; Spadinger I; Abolmaesumi P; Salcudean SE
    Med Image Anal; 2019 Oct; 57():186-196. PubMed ID: 31325722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust Automatic Pectoral Muscle Segmentation from Mammograms Using Texture Gradient and Euclidean Distance Regression.
    Bora VB; Kothari AG; Keskar AG
    J Digit Imaging; 2016 Feb; 29(1):115-25. PubMed ID: 26259521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography.
    Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D
    Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pectoral muscle identification in mammograms.
    Camilus KS; Govindan VK; Sathidevi PS
    J Appl Clin Med Phys; 2011 Mar; 12(3):3285. PubMed ID: 21844845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic identification of the pectoral muscle in mammograms.
    Ferrari RJ; Rangayyan RM; Desautels JE; Borges RA; Frère AF
    IEEE Trans Med Imaging; 2004 Feb; 23(2):232-45. PubMed ID: 14964567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the reliability of deep learning-based head and neck tumour segmentation using uncertainty estimation with multi-modal images.
    Ren J; Teuwen J; Nijkamp J; Rasmussen M; Gouw Z; Grau Eriksen J; Sonke JJ; Korreman S
    Phys Med Biol; 2024 Aug; 69(16):. PubMed ID: 39059432
    [No Abstract]   [Full Text] [Related]  

  • 33. Removal of pectoral muscle based on topographic map and shape-shifting silhouette.
    Mughal B; Muhammad N; Sharif M; Rehman A; Saba T
    BMC Cancer; 2018 Aug; 18(1):778. PubMed ID: 30068304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Location of mammograms ROI's and reduction of false-positive.
    Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA
    Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uncertainty estimation using a 3D probabilistic U-Net for segmentation with small radiotherapy clinical trial datasets.
    Chlap P; Min H; Dowling J; Field M; Cloak K; Leong T; Lee M; Chu J; Tan J; Tran P; Kron T; Sidhom M; Wiltshire K; Keats S; Kneebone A; Haworth A; Ebert MA; Vinod SK; Holloway L
    Comput Med Imaging Graph; 2024 Sep; 116():102403. PubMed ID: 38878632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian deep learning-based
    Lee HH; Kim H
    Magn Reson Med; 2022 Jul; 88(1):38-52. PubMed ID: 35344604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pectoral muscle segmentation: a review.
    Ganesan K; Acharya UR; Chua KC; Min LC; Abraham KT
    Comput Methods Programs Biomed; 2013 Apr; 110(1):48-57. PubMed ID: 23270962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic Pectoral Muscle Region Segmentation in Mammograms Using Genetic Algorithm and Morphological Selection.
    Shen R; Yan K; Xiao F; Chang J; Jiang C; Zhou K
    J Digit Imaging; 2018 Oct; 31(5):680-691. PubMed ID: 29582242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.