BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37137323)

  • 1. Strategy to implement a convolutional neural network based ideal model observer via transfer learning for multi-slice simulated breast CT images.
    Kim G; Han M; Baek J
    Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37137323
    [No Abstract]   [Full Text] [Related]  

  • 2. A convolutional neural network-based model observer for breast CT images.
    Kim G; Han M; Shim H; Baek J
    Med Phys; 2020 Apr; 47(4):1619-1632. PubMed ID: 32017147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-whitened matched filter and convolutional neural network based model observer performance for mass lesion detection in non-contrast breast CT.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2023 Dec; 50(12):7558-7567. PubMed ID: 37646463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolutional neural network-based model observer for signal known statistically task in breast tomosynthesis images.
    Jang H; Baek J
    Med Phys; 2023 Oct; 50(10):6390-6408. PubMed ID: 36971505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A convolutional neural network-based anthropomorphic model observer for signal-known-statistically and background-known-statistically detection tasks.
    Han M; Baek J
    Phys Med Biol; 2020 Nov; 65(22):225025. PubMed ID: 33032268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of human observer performance on lesion detectability in single-slice and multislice dedicated breast cone beam CT images with breast anatomical background.
    Han M; Jang H; Baek J
    Med Phys; 2018 Dec; 45(12):5385-5396. PubMed ID: 30273955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of supervised-learning approaches for designing a channelized observer for image quality assessment in CT.
    Pouget E; Dedieu V
    Med Phys; 2023 Jul; 50(7):4282-4295. PubMed ID: 36647620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
    Kopp FK; Catalano M; Pfeiffer D; Fingerle AA; Rummeny EJ; Noël PB
    Med Phys; 2018 Oct; 45(10):4439-4447. PubMed ID: 30137658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between human observer performance and model observer performance in differential phase contrast CT.
    Li K; Garrett J; Chen GH
    Med Phys; 2013 Nov; 40(11):111905. PubMed ID: 24320438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A performance comparison of anthropomorphic model observers for breast cone beam CT images: A single-slice and multislice study.
    Han M; Baek J
    Med Phys; 2019 Aug; 46(8):3431-3441. PubMed ID: 31106432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of human and Hotelling observer performance for a fan-beam CT signal detection task.
    Sanchez AA; Sidky EY; Reiser I; Pan X
    Med Phys; 2013 Mar; 40(3):031104. PubMed ID: 23464284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.
    Yu L; Chen B; Kofler JM; Favazza CP; Leng S; Kupinski MA; McCollough CH
    Med Phys; 2017 Aug; 44(8):3990-3999. PubMed ID: 28555878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the limited performance of a deep-learning-based SPECT denoising approach: An observer-study-based characterization.
    Yu Z; Rahman MA; Jha AK
    Proc SPIE Int Soc Opt Eng; 2022; 12035():. PubMed ID: 35847481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction.
    Eck BL; Fahmi R; Brown KM; Zabic S; Raihani N; Miao J; Wilson DL
    Med Phys; 2015 Oct; 42(10):6098-111. PubMed ID: 26429285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcalcification detectability in breast CT images using CNN observers.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2024 Feb; 51(2):933-945. PubMed ID: 38154070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of anatomical noise on the detectability of cone beam CT images with different slice direction, slice thickness, and volume glandular fraction.
    Han M; Park S; Baek J
    Opt Express; 2016 Aug; 24(17):18843-59. PubMed ID: 27557168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical observer for atherosclerotic plaque classification in spectral computed tomography.
    Lorsakul A; Fakhri GE; Worstell W; Ouyang J; Rakvongthai Y; Laine AF; Li Q
    J Med Imaging (Bellingham); 2016 Jul; 3(3):035501. PubMed ID: 27429999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.