BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37137964)

  • 1. Eyestalk transcriptome and methyl farnesoate titers provide insight into the physiological changes in the male snow crab, Chionoecetes opilio, after its terminal molt.
    Toyota K; Yamamoto T; Mori T; Mekuchi M; Miyagawa S; Ihara M; Shigenobu S; Ohira T
    Sci Rep; 2023 May; 13(1):7204. PubMed ID: 37137964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Eyestalk-Ablation on Circulating Ecdysteroids in Hemolymph of Snow Crabs, Chionoecetes opilio: Physiological Evidence for a Terminal Molt.
    Tamone SL; Adams MM; Dutton JM
    Integr Comp Biol; 2005 Jan; 45(1):166-71. PubMed ID: 21676758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia - Temperature effects on expression of molting and growth regulatory genes in adult red king crab.
    Andersen Ø; Johnsen H; Wittmann AC; Harms L; Thesslund T; Berg RS; Siikavuopio S; Mykles DL
    Comp Biochem Physiol B Biochem Mol Biol; 2022 Jan; 257():110678. PubMed ID: 34655763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that ecdysteroids and methyl farnesoate control allometric growth and differentiation in a crustacean.
    Laufer H; Ahl J; Rotllant G; Baclaski B
    Insect Biochem Mol Biol; 2002 Feb; 32(2):205-10. PubMed ID: 11755065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of G-protein coupled receptors from the blackback land crab Gecarcinus lateralis Y organ transcriptome over the molt cycle.
    Tran NM; Mykles DL; Elizur A; Ventura T
    BMC Genomics; 2019 Jan; 20(1):74. PubMed ID: 30669976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal control of the crustacean molting gland: Insights from transcriptomics and proteomics.
    Mykles DL; Chang ES
    Gen Comp Endocrinol; 2020 Aug; 294():113493. PubMed ID: 32339519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of ecdysteroidogenesis, methyl farnesoate synthesis and expression of ecdysteroid receptor and retinoid X receptor in the hepatopancreas and ovary of the giant mud crab, Scylla serrata by melatonin.
    Girish BP; Swetha Ch; Reddy PS
    Gen Comp Endocrinol; 2015; 217-218():37-42. PubMed ID: 25989476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molt regulation in green and red color morphs of the crab Carcinus maenas: gene expression of molt-inhibiting hormone signaling components.
    Abuhagr AM; Blindert JL; Nimitkul S; Zander IA; Labere SM; Chang SA; Maclea KS; Chang ES; Mykles DL
    J Exp Biol; 2014 Mar; 217(Pt 5):796-808. PubMed ID: 24198255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl farnesoate couples environmental changes to testicular development in the crab Carcinus maenas.
    Nagaraju GP; Borst DW
    J Exp Biol; 2008 Sep; 211(Pt 17):2773-8. PubMed ID: 18723534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus.
    Lv J; Zhang L; Liu P; Li J
    PLoS One; 2017; 12(4):e0175315. PubMed ID: 28394948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis.
    Pitts NL; Mykles DL
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():328-340. PubMed ID: 27989866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl farnesoate controls adult male morphogenesis in the crayfish, Procambarus clarkii.
    Laufer H; Demir N; Pan X; Stuart JD; Ahl JS
    J Insect Physiol; 2005 Apr; 51(4):379-84. PubMed ID: 15890180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional transcriptome reveals hepatopancreatic lipid metabolism during the molting cycle of the Chinese mitten crab Eriocheir sinensis.
    Li Z; Zhang G; Pan K; Niu X; Shu-Chien AC; Chen T; Zhang X; Wu X
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Oct; 284():111474. PubMed ID: 37406959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population genetic analysis and origin discrimination of snow crab (Chionoecetes opilio) using microsatellite markers.
    Kang JH; Park JY; Kim EM; Ko HS
    Mol Biol Rep; 2013 Oct; 40(10):5563-71. PubMed ID: 24022521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crustacean hyperglycemic hormones of two cold water crab species, Chionoecetes opilio and C. japonicus: isolation of cDNA sequences and localization of CHH neuropeptide in eyestalk ganglia.
    Chung JS; Ahn IS; Yu OH; Kim DS
    Gen Comp Endocrinol; 2015 Apr; 214():177-85. PubMed ID: 25224573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential role of juvenile hormone acid methyltransferase in methyl farnesoate (MF) biosynthesis in the swimming crab, Portunus trituberculatus.
    Xie X; Tao T; Liu M; Zhou Y; Liu Z; Zhu D
    Anim Reprod Sci; 2016 May; 168():40-49. PubMed ID: 26952760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and regulation of esterases that hydrolyze methyl farnesoate in Homarus americanus and other crustaceans.
    Homola E; Chang ES
    Gen Comp Endocrinol; 1997 Apr; 106(1):62-72. PubMed ID: 9126466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiological determinants in outbreaks of bitter crab disease (Hematodinium sp.) in snow crabs Chionoecetes opilio from Conception Bay, Newfoundland, Canada.
    Shields JD; Taylor DM; O'Keefe PG; Colbourne E; Hynick E
    Dis Aquat Organ; 2007 Aug; 77(1):61-72. PubMed ID: 17933398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molt-dependent transcriptome analysis of claw muscles in Chinese mitten crab Eriocheir sinensis.
    Tian Z; Jiao C
    Genes Genomics; 2019 May; 41(5):515-528. PubMed ID: 30767169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome analysis provides insights into the molecular basis of circadian cycle regulation in Eriocheir sinensis.
    Li Y; Han Z; She Q; Zhao Y; Wei H; Dong J; Xu W; Li X; Liang S
    Gene; 2019 Apr; 694():42-49. PubMed ID: 30716437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.