These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37138437)

  • 41. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats.
    Yu W; Wu J; Cai F; Xiang J; Zha W; Fan D; Guo S; Ming Z; Liu C
    PLoS One; 2012; 7(12):e52013. PubMed ID: 23251674
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of Oxidative Stress in Metabolic and Subcellular Abnormalities in Diabetic Cardiomyopathy.
    Dhalla NS; Shah AK; Tappia PS
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current understanding of structural and molecular changes in diabetic cardiomyopathy.
    Akhtar MS; Alavudeen SS; Raza A; Imam MT; Almalki ZS; Tabassum F; Iqbal MJ
    Life Sci; 2023 Nov; 332():122087. PubMed ID: 37714373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The diabetic cardiomyopathy.
    Tarquini R; Lazzeri C; Pala L; Rotella CM; Gensini GF
    Acta Diabetol; 2011 Sep; 48(3):173-81. PubMed ID: 20198391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart.
    Costantino S; Paneni F; Lüscher TF; Cosentino F
    Eur Heart J; 2016 Feb; 37(6):572-6. PubMed ID: 26553540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How Diabetes and Heart Failure Modulate Each Other and Condition Management.
    Randhawa VK; Dhanvantari S; Connelly KA
    Can J Cardiol; 2021 Apr; 37(4):595-608. PubMed ID: 33276047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches.
    Karwi QG; Ho KL; Pherwani S; Ketema EB; Sun Q; Lopaschuk GD
    Cardiovasc Res; 2022 Feb; 118(3):686-715. PubMed ID: 33783483
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SGLT2 Inhibitors: A Novel Player in the Treatment and Prevention of Diabetic Cardiomyopathy.
    Li N; Zhou H
    Drug Des Devel Ther; 2020; 14():4775-4788. PubMed ID: 33192053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment.
    Falcão-Pires I; Leite-Moreira AF
    Heart Fail Rev; 2012 May; 17(3):325-44. PubMed ID: 21626163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.
    Wang L; Cai Y; Jian L; Cheung CW; Zhang L; Xia Z
    Cardiovasc Diabetol; 2021 Jan; 20(1):2. PubMed ID: 33397369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities.
    Russo I; Frangogiannis NG
    J Mol Cell Cardiol; 2016 Jan; 90():84-93. PubMed ID: 26705059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for human diabetic cardiomyopathy.
    Marfella R; Sardu C; Mansueto G; Napoli C; Paolisso G
    Acta Diabetol; 2021 Aug; 58(8):983-988. PubMed ID: 33791873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of exenatide on cardiac function, perfusion, and energetics in type 2 diabetic patients with cardiomyopathy: a randomized controlled trial against insulin glargine.
    Chen WJY; Diamant M; de Boer K; Harms HJ; Robbers LFHJ; van Rossum AC; Kramer MHH; Lammertsma AA; Knaapen P
    Cardiovasc Diabetol; 2017 May; 16(1):67. PubMed ID: 28526033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes.
    Prakoso D; De Blasio MJ; Tate M; Kiriazis H; Donner DG; Qian H; Nash D; Deo M; Weeks KL; Parry LJ; Gregorevic P; McMullen JR; Ritchie RH
    Am J Physiol Heart Circ Physiol; 2020 Apr; 318(4):H840-H852. PubMed ID: 32142359
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blackcurrant Improves Diabetic Cardiovascular Dysfunction by Reducing Inflammatory Cytokines in Type 2 Diabetes Mellitus Mice.
    Kim HY; Yoon JJ; Lee HK; Tai AL; Lee YJ; Kim DS; Kang DG; Lee HS
    Nutrients; 2021 Nov; 13(11):. PubMed ID: 34836432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy.
    Wenmeng W; Qizhu T
    Med Hypotheses; 2011 Feb; 76(2):181-3. PubMed ID: 20932648
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peroxisome proliferator activator receptors (PPAR), insulin resistance, and cardiomyopathy: friends or foes for the diabetic patient with heart failure?
    Nikolaidis LA; Levine TB
    Cardiol Rev; 2004; 12(3):158-70. PubMed ID: 15078585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics.
    Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M
    Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative stress and diabetic cardiomyopathy: a brief review.
    Cai L; Kang YJ
    Cardiovasc Toxicol; 2001; 1(3):181-93. PubMed ID: 12213971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Left ventricular diastolic dysfunction in diabetic patients: pathophysiology and therapeutic implications.
    Tsujino T; Kawasaki D; Masuyama T
    Am J Cardiovasc Drugs; 2006; 6(4):219-30. PubMed ID: 16913823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.