These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37138620)
21. Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Xu J; Yıldıztekin M; Han D; Keskin C; Baran A; Baran MF; Eftekhari A; Ava CA; Kandemir Sİ; Cebe DB; Dağ B; Beilerli A; Khalilov R Heliyon; 2023 Aug; 9(8):e19061. PubMed ID: 37636361 [TBL] [Abstract][Full Text] [Related]
22. Investigating the Antibacterial and Anti-inflammatory Potential of Polyol-Synthesized Silver Nanoparticles. Ahmad I; Khan MN; Hayat K; Ahmad T; Shams DF; Khan W; Tirth V; Rehman G; Muhammad W; Elhadi M; Alotaibi A; Shah SK ACS Omega; 2024 Mar; 9(11):13208-13216. PubMed ID: 38524435 [TBL] [Abstract][Full Text] [Related]
23. Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from Sumanth B; Lakshmeesha TR; Ansari MA; Alzohairy MA; Udayashankar AC; Shobha B; Niranjana SR; Srinivas C; Almatroudi A Int J Nanomedicine; 2020; 15():8519-8536. PubMed ID: 33173290 [TBL] [Abstract][Full Text] [Related]
24. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Farhadi S; Ajerloo B; Mohammadi A Acta Chim Slov; 2017 Mac; 64(1):129-143. PubMed ID: 28380222 [TBL] [Abstract][Full Text] [Related]
26. One-Pot Synthesis of Silver Nanoparticles from Kurian JT; Balasubramanian B; Meyyazhagan A; Pappuswamy M; Alanazi AM; Rengasamy KR; Arumugam VA; Sebastian JK; Chen JT Front Biosci (Landmark Ed); 2023 Aug; 28(8):169. PubMed ID: 37664941 [TBL] [Abstract][Full Text] [Related]
27. Biosynthesis of silver nanoparticles using Al-Otibi F; Perveen K; Al-Saif NA; Alharbi RI; Bokhari NA; Albasher G; Al-Otaibi RM; Al-Mosa MA Saudi J Biol Sci; 2021 Apr; 28(4):2229-2235. PubMed ID: 33935565 [TBL] [Abstract][Full Text] [Related]
28. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Jiang T; Huang J; Peng J; Wang Y; Du L Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242051 [TBL] [Abstract][Full Text] [Related]
30. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles. Van Viet P; Sang TT; Bich NHN; Thi CM J Photochem Photobiol B; 2018 May; 182():108-114. PubMed ID: 29656219 [TBL] [Abstract][Full Text] [Related]
31. Characterization and Evaluation of Antimicrobial Potential of Fozia F; Ahmad N; Buoharee ZA; Ahmad I; Aslam M; Wahab A; Ullah R; Ahmad S; Alotaibi A; Tariq A Molecules; 2022 Jul; 27(14):. PubMed ID: 35889490 [TBL] [Abstract][Full Text] [Related]
32. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. El-Baz AF; El-Batal AI; Abomosalam FM; Tayel AA; Shetaia YM; Yang ST J Basic Microbiol; 2016 May; 56(5):531-40. PubMed ID: 26515502 [TBL] [Abstract][Full Text] [Related]
33. Biosynthesized silver nanoparticles mediated by Ammi visnaga extract enhanced systemic resistance and triggered multiple defense-related genes, including SbWRKY transcription factors, against tobacco mosaic virus infection. Aseel DG; Ibrahim OM; Abdelkhalek A BMC Plant Biol; 2024 Aug; 24(1):756. PubMed ID: 39107683 [TBL] [Abstract][Full Text] [Related]
34. Green Approach to Overcome the Resistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9. Soliman AM; Abdel-Latif W; Shehata IH; Fouda A; Abdo AM; Ahmed YM Biol Trace Elem Res; 2021 Feb; 199(2):800-811. PubMed ID: 32451695 [TBL] [Abstract][Full Text] [Related]
35. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Khan S; Singh S; Gaikwad S; Nawani N; Junnarkar M; Pawar SV Environ Sci Pollut Res Int; 2020 Aug; 27(22):27221-27233. PubMed ID: 31065983 [TBL] [Abstract][Full Text] [Related]
36. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Moosavy MH; de la Guardia M; Mokhtarzadeh A; Khatibi SA; Hosseinzadeh N; Hajipour N Sci Rep; 2023 May; 13(1):7230. PubMed ID: 37142621 [TBL] [Abstract][Full Text] [Related]
37. Antibacterial activity of silver nanoparticles synthesized from serine. Jayaprakash N; Judith Vijaya J; John Kennedy L; Priadharsini K; Palani P Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():316-322. PubMed ID: 25686955 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and antibacterial potential of Loranthus pulverulentus conjugated silver nanoparticles. Subhani MA; Irshad M; Nazir A; Hafeez M; Ali S Microsc Res Tech; 2022 Nov; 85(11):3530-3540. PubMed ID: 35861158 [TBL] [Abstract][Full Text] [Related]
39. Antioxidant Activities of Photoinduced Phycogenic Silver Nanoparticles and Their Potential Applications. Maduraimuthu V; Ranishree JK; Gopalakrishnan RM; Ayyadurai B; Raja R; Heese K Antioxidants (Basel); 2023 Jun; 12(6):. PubMed ID: 37372028 [TBL] [Abstract][Full Text] [Related]
40. Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant. Fathy RM; Salem MSE; Mahfouz AY Biol Trace Elem Res; 2020 Aug; 196(2):662-678. PubMed ID: 31808109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]