These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37138638)
1. Microbial cell wall sorption and Fe-Mn binding in rhizosphere contribute to the obstruction of cadmium from soil to rice. Li J; Guo YK; Zhao QX; He JZ; Zhang Q; Cao HY; Liang CQ Front Microbiol; 2023; 14():1162119. PubMed ID: 37138638 [TBL] [Abstract][Full Text] [Related]
2. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.). Wei T; Liu X; Dong M; Lv X; Hua L; Jia H; Ren X; Yu S; Guo J; Li Y J Environ Manage; 2021 Jan; 278(Pt 2):111533. PubMed ID: 33157466 [TBL] [Abstract][Full Text] [Related]
3. Sorption mechanism and distribution of cadmium by different microbial species. Li J; Liu YR; Zhang LM; He JZ J Environ Manage; 2019 May; 237():552-559. PubMed ID: 30826636 [TBL] [Abstract][Full Text] [Related]
4. Cadmium tolerant microbial strains possess different mechanisms for cadmium biosorption and immobilization in rice seedlings. Ali Q; Ayaz M; Yu C; Wang Y; Gu Q; Wu H; Gao X Chemosphere; 2022 Sep; 303(Pt 3):135206. PubMed ID: 35660052 [TBL] [Abstract][Full Text] [Related]
5. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium. Wang C; Huang Y; Yang X; Xue W; Zhang X; Zhang Y; Pang J; Liu Y; Liu Z Chemosphere; 2020 Aug; 252():126603. PubMed ID: 32240860 [TBL] [Abstract][Full Text] [Related]
6. Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH. Wang M; Wang L; Zhao S; Li S; Lei X; Qin L; Sun X; Chen S J Hazard Mater; 2021 Aug; 416():126079. PubMed ID: 34492898 [TBL] [Abstract][Full Text] [Related]
7. Water management increased rhizosphere redox potential and decreased Cd uptake in a low-Cd rice cultivar but decreased redox potential and increased Cd uptake in a high-Cd rice cultivar under intercropping. Xu Y; Feng J; Li H Sci Total Environ; 2021 Jan; 751():141701. PubMed ID: 32889460 [TBL] [Abstract][Full Text] [Related]
8. Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.). Huang L; Wang X; Chi Y; Huang L; Li WC; Ye Z Ecotoxicol Environ Saf; 2021 Oct; 222():112474. PubMed ID: 34214770 [TBL] [Abstract][Full Text] [Related]
9. Fe fortification limits rice Cd accumulation by promoting root cell wall chelation and reducing the mobility of Cd in xylem. Zhang Q; Huang D; Xu C; Zhu H; Feng RW; Zhu Q Ecotoxicol Environ Saf; 2022 Jul; 240():113700. PubMed ID: 35636238 [TBL] [Abstract][Full Text] [Related]
10. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165 [TBL] [Abstract][Full Text] [Related]
11. [Effects of Straw Incorporation on Cadmium Accumulation and Subcellular Distribution in Rice]. Duan GL; Wang F; Cen K; Wang BX; Cheng WD; Liu YC; Zhang HM Huan Jing Ke Xue; 2017 Sep; 38(9):3927-3936. PubMed ID: 29965276 [TBL] [Abstract][Full Text] [Related]
12. Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain. Fang X; Wang J; Chen H; Christl I; Wang P; Kretzschmar R; Zhao FJ Environ Pollut; 2021 Nov; 289():117918. PubMed ID: 34426194 [TBL] [Abstract][Full Text] [Related]
13. Screening strains for microbial biosorption technology of cadmium. Huang H; Jia Q; Jing W; Dahms HU; Wang L Chemosphere; 2020 Jul; 251():126428. PubMed ID: 32169714 [TBL] [Abstract][Full Text] [Related]
14. Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil. Mao P; Zhuang P; Li F; McBride MB; Ren W; Li Y; Li Y; Mo H; Fu H; Li Z Sci Total Environ; 2019 Oct; 687():441-450. PubMed ID: 31212152 [TBL] [Abstract][Full Text] [Related]
15. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil]. Chang TJ; Cui XQ; Ruan Z; Zhao XL Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521 [TBL] [Abstract][Full Text] [Related]
16. Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Hu L; McBride MB; Cheng H; Wu J; Shi J; Xu J; Wu L Environ Res; 2011 Apr; 111(3):356-61. PubMed ID: 21316043 [TBL] [Abstract][Full Text] [Related]
17. Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil. Fan R; Xie W; Ma H; Zhu M; Ma K; Yan X Biodegradation; 2023 Oct; 34(5):445-459. PubMed ID: 37043132 [TBL] [Abstract][Full Text] [Related]
18. [Effects of an Amendment on Cadmium Transportation in the Rhizosphere Soil-Rice System]. Li YC; Wang YH; Tang MD; Wu BF; Li LF; Ai SY; Ling ZX Huan Jing Ke Xue; 2019 Jul; 40(7):3331-3338. PubMed ID: 31854735 [TBL] [Abstract][Full Text] [Related]
19. Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Liu A; Wang W; Zheng X; Chen X; Fu W; Wang G; Ji J; Jin C; Guan C Chemosphere; 2022 Sep; 302():134900. PubMed ID: 35568210 [TBL] [Abstract][Full Text] [Related]
20. [Effects of Different Organic Materials on Absorption and Translocation of Arsenic and Cadmium in Rice]. Li KY; Zhao TT; Chen J; Zhao XL Huan Jing Ke Xue; 2021 Apr; 42(4):2047-2055. PubMed ID: 33742840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]