These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 37139528)

  • 41. A comparative analysis of
    Lindemann N; Kalix L; Possiel J; Stasch R; Kusian T; Köster RW; von Trotha JW
    Front Behav Neurosci; 2022; 16():885775. PubMed ID: 35990722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish.
    Migault G; van der Plas TL; Trentesaux H; Panier T; Candelier R; Proville R; Englitz B; Debrégeas G; Bormuth V
    Curr Biol; 2018 Dec; 28(23):3723-3735.e6. PubMed ID: 30449666
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A single-cell resolution gene expression atlas of the larval zebrafish brain.
    Shainer I; Kuehn E; Laurell E; Al Kassar M; Mokayes N; Sherman S; Larsch J; Kunst M; Baier H
    Sci Adv; 2023 Feb; 9(8):eade9909. PubMed ID: 36812331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrating anatomy and function for zebrafish circuit analysis.
    Arrenberg AB; Driever W
    Front Neural Circuits; 2013; 7():74. PubMed ID: 23630469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous Behavioral and Neuronal Imaging by Tracking Microscopy.
    Robson DN; Li JM
    Methods Mol Biol; 2024; 2707():155-167. PubMed ID: 37668911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience.
    Haynes EM; Ulland TK; Eliceiri KW
    Front Mol Neurosci; 2022; 15():867010. PubMed ID: 35493325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.
    Naumann EA; Fitzgerald JE; Dunn TW; Rihel J; Sompolinsky H; Engert F
    Cell; 2016 Nov; 167(4):947-960.e20. PubMed ID: 27814522
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Topographically Localized Modulation of Tectal Cell Spatial Tuning by Complex Natural Scenes.
    Sainsbury TTJ; Diana G; Meyer MP
    eNeuro; 2023 Jan; 10(1):. PubMed ID: 36543538
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae.
    Lagogiannis K; Diana G; Meyer MP
    Elife; 2020 Aug; 9():. PubMed ID: 32773042
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Volumetric Imaging of Neural Activity by Light Field Microscopy.
    Bai L; Zhang Z; Ye L; Cong L; Zhao Y; Zhang T; Shi Z; Wang K
    Neurosci Bull; 2022 Dec; 38(12):1559-1568. PubMed ID: 35939199
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.
    Sumbre G; Poo MM
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):873-9. PubMed ID: 24003199
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zebrafish forebrain and temporal conditioning.
    Cheng RK; Jesuthasan SJ; Penney TB
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1637):20120462. PubMed ID: 24446496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy.
    Karagyozov D; Mihovilovic Skanata M; Lesar A; Gershow M
    Cell Rep; 2018 Oct; 25(5):1371-1383.e10. PubMed ID: 30380425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy.
    Prevedel R; Yoon YG; Hoffmann M; Pak N; Wetzstein G; Kato S; Schrödel T; Raskar R; Zimmer M; Boyden ES; Vaziri A
    Nat Methods; 2014 Jul; 11(7):727-730. PubMed ID: 24836920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring activity in neural circuits with genetically encoded indicators.
    Broussard GJ; Liang R; Tian L
    Front Mol Neurosci; 2014; 7():97. PubMed ID: 25538558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.
    Lin X; Wang S; Yu X; Liu Z; Wang F; Li WT; Cheng SH; Dai Q; Shi P
    Lab Chip; 2015 Feb; 15(3):680-9. PubMed ID: 25406521
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Network Properties Revealed during Multi-Scale Calcium Imaging of Seizure Activity in Zebrafish.
    Liu J; Baraban SC
    eNeuro; 2019; 6(1):. PubMed ID: 30895220
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Larval zebrafish as a model for studying individual variability in translational neuroscience research.
    Jacobs EAK; Ryu S
    Front Behav Neurosci; 2023; 17():1143391. PubMed ID: 37424749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visually guided gradation of prey capture movements in larval zebrafish.
    Patterson BW; Abraham AO; MacIver MA; McLean DL
    J Exp Biol; 2013 Aug; 216(Pt 16):3071-83. PubMed ID: 23619412
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.