These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 37139545)

  • 21. Application of deep learning in genomics.
    Liu J; Li J; Wang H; Yan J
    Sci China Life Sci; 2020 Dec; 63(12):1860-1878. PubMed ID: 33051704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Silico Identification of RNA Modifications from High-Throughput Sequencing Data Using HAMR.
    Kuksa PP; Leung YY; Vandivier LE; Anderson Z; Gregory BD; Wang LS
    Methods Mol Biol; 2017; 1562():211-229. PubMed ID: 28349463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeepMRMP: A new predictor for multiple types of RNA modification sites using deep learning.
    Sun PP; Chen YB; Liu B; Gao YX; Han Y; He F; Ji JC
    Math Biosci Eng; 2019 Jul; 16(6):6231-6241. PubMed ID: 31698559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction.
    Walters WP; Barzilay R
    Acc Chem Res; 2021 Jan; 54(2):263-270. PubMed ID: 33370107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data.
    López-García G; Jerez JM; Franco L; Veredas FJ
    PLoS One; 2020; 15(3):e0230536. PubMed ID: 32214348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2.
    Ueda H; Dasgupta B; Yu BY
    Methods Mol Biol; 2023; 2632():299-319. PubMed ID: 36781737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multivariate Analysis of RNA Chemistry Marks Uncovers Epitranscriptomics-Based Biomarker Signature for Adult Diffuse Glioma Diagnostics.
    Relier S; Amalric A; Attina A; Koumare IB; Rigau V; Burel Vandenbos F; Fontaine D; Baroncini M; Hugnot JP; Duffau H; Bauchet L; Hirtz C; Rivals E; David A
    Anal Chem; 2022 Sep; 94(35):11967-11972. PubMed ID: 35998076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo prediction of RNA-protein interactions with graph neural networks.
    Arora V; Sanguinetti G
    RNA; 2022 Nov; 28(11):1469-1480. PubMed ID: 36008134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of vector-host-pathogen relationships using data mining and machine learning.
    Agany DDM; Pietri JE; Gnimpieba EZ
    Comput Struct Biotechnol J; 2020; 18():1704-1721. PubMed ID: 32670510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of species-specific RNA N6-methyladinosine modification sites from RNA sequences.
    Wang R; Chung CR; Huang HD; Lee TY
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data.
    Huang Y; Zhang P
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Machine Learning Based Prediction of RNA-protein Interactions.
    Sagar A; Xue B
    Protein Pept Lett; 2019; 26(8):601-619. PubMed ID: 31215361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning Methods for Survival Analysis with Clinical and Transcriptomics Data of Breast Cancer.
    Doan LMT; Angione C; Occhipinti A
    Methods Mol Biol; 2023; 2553():325-393. PubMed ID: 36227551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential.
    Zhao Z; Meng J; Su R; Zhang J; Chen J; Ma X; Xia Q
    J Hepatol; 2020 Sep; 73(3):664-679. PubMed ID: 32330603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer epitranscriptomics in a nutshell.
    Primac I; Penning A; Fuks F
    Curr Opin Genet Dev; 2022 Aug; 75():101924. PubMed ID: 35679814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome-Wide Mapping of m
    Hawley BR; Jaffrey SR
    Curr Protoc Mol Biol; 2019 Apr; 126(1):e88. PubMed ID: 30874375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Machine Learning to Identify Biomarkers Affecting Fat Deposition in Pigs by Integrating Multisource Transcriptome Information.
    Liu H; Xing K; Jiang Y; Liu Y; Wang C; Ding X
    J Agric Food Chem; 2022 Aug; 70(33):10359-10370. PubMed ID: 35953074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Messenger RNA Modifications in Plants.
    Shen L; Liang Z; Wong CE; Yu H
    Trends Plant Sci; 2019 Apr; 24(4):328-341. PubMed ID: 30745055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.