BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37139547)

  • 1. In-silico identification of novel DDI2 inhibitor in glioblastoma
    Roy PK; Majumder R; Mandal M
    J Biomol Struct Dyn; 2024 Mar; 42(5):2270-2281. PubMed ID: 37139547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction.
    Koizumi S; Irie T; Hirayama S; Sakurai Y; Yashiroda H; Naguro I; Ichijo H; Hamazaki J; Murata S
    Elife; 2016 Aug; 5():. PubMed ID: 27528193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disabling the Protease DDI2 Attenuates the Transcriptional Activity of NRF1 and Potentiates Proteasome Inhibitor Cytotoxicity.
    Northrop A; Vangala JR; Feygin A; Radhakrishnan SK
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian Ddi2 is a shuttling factor containing a retroviral protease domain that influences binding of ubiquitylated proteins and proteasomal degradation.
    Collins GA; Sha Z; Kuo CL; Erbil B; Goldberg AL
    J Biol Chem; 2022 May; 298(5):101875. PubMed ID: 35358511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors.
    Gu Y; Wang X; Wang Y; Wang Y; Li J; Yu FX
    Cell Signal; 2020 Nov; 75():109775. PubMed ID: 32916277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aspartyl protease DDI2 drives adaptation to proteasome inhibition in multiple myeloma.
    Op M; Ribeiro ST; Chavarria C; De Gassart A; Zaffalon L; Martinon F
    Cell Death Dis; 2022 May; 13(5):475. PubMed ID: 35589686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing antiviral drugs against HTLV-1 protease by molecular docking and molecular dynamics simulation.
    Jahantigh H; Ahmadi N; Lovreglio P; Stufano A; Enayatkhani M; Shahbazi B; Ahmadi K
    J Biomol Struct Dyn; 2023 Jul; 41(11):5057-5066. PubMed ID: 35612907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival.
    Chen T; Ho M; Briere J; Moscvin M; Czarnecki PG; Anderson KC; Blackwell TK; Bianchi G
    Blood Adv; 2022 Jan; 6(2):429-440. PubMed ID: 34649278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repurposing of FDA approved drugs against
    Joshi T; Sharma P; Joshi T; Mathpal S; Pande V; Chandra S
    J Biomol Struct Dyn; 2022 May; 40(8):3731-3744. PubMed ID: 33251976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the dual effects of antiviral drugs on SARS-CoV-2 receptors and the ACE2 receptor using structure-based virtual screening and molecular dynamics simulation.
    Jahantigh HR; Ahmadi N; Shahbazi B; Lovreglio P; Habibi M; Stufano A; Gouklani H; Ahmadi K
    J Biomol Struct Dyn; 2023; 41(13):6051-6073. PubMed ID: 35876061
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Maurya AK; Mishra N
    J Biomol Struct Dyn; 2021 Nov; 39(18):7306-7321. PubMed ID: 32835632
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    El-Hddad S; Sobhy M; Ayoub A; El-Adl K
    J Biomol Struct Dyn; 2023 Nov; 41(19):9267-9281. PubMed ID: 36399002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repurposing against the RNA-dependent RNA polymerase domain of dengue serotype 3 by virtual screening and molecular dynamics simulations.
    Gangopadhyay A; Saha A
    J Biomol Struct Dyn; 2023 Jul; 41(11):5152-5165. PubMed ID: 35642087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DDI2 Is a Ubiquitin-Directed Endoprotease Responsible for Cleavage of Transcription Factor NRF1.
    Dirac-Svejstrup AB; Walker J; Faull P; Encheva V; Akimov V; Puglia M; Perkins D; Kümper S; Hunjan SS; Blagoev B; Snijders AP; Powell DJ; Svejstrup JQ
    Mol Cell; 2020 Jul; 79(2):332-341.e7. PubMed ID: 32521225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational repurposing approach for targeting the critical spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants using exhaustive structure-based virtual screening, molecular dynamic simulations and MM-PBSA methods.
    Ebrahimi M; Karami L; Alijanianzadeh M
    Comput Biol Med; 2022 Aug; 147():105709. PubMed ID: 35728285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of CCAAT/enhancer binding protein homologous protein (CHOP)-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).
    Tian X; Ye J; Alonso-Basanta M; Hahn SM; Koumenis C; Dorsey JF
    J Biol Chem; 2011 Aug; 286(33):29408-29416. PubMed ID: 21697087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic drug repurposing approach to identify promising inhibitors from FDA-approved drugs against Nsp4 protein of SARS-CoV-2.
    Chakraborty J; Maity A; Sarkar H
    J Biomol Struct Dyn; 2023 Feb; 41(2):550-559. PubMed ID: 34844509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma.
    Peñaranda Fajardo NM; Meijer C; Kruyt FA
    Biochem Pharmacol; 2016 Oct; 118():1-8. PubMed ID: 27106078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.
    Kumar Y; Singh H; Patel CN
    J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.