BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37139594)

  • 1. Evolution of large Aβ16-22 aggregates at atomic details and potential of mean force associated to peptide unbinding and fragmentation events.
    Iorio A; Timr Š; Chiodo L; Derreumaux P; Sterpone F
    Proteins; 2023 Aug; 91(8):1152-1162. PubMed ID: 37139594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of PHF6 Peptide of Tau Protein.
    Man VH; He X; Gao J; Wang J
    J Chem Theory Comput; 2021 Oct; 17(10):6458-6471. PubMed ID: 34491058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ
    Li X; Lei J; Qi R; Xie L; Wei G
    Phys Chem Chem Phys; 2019 Jul; 21(28):15686-15694. PubMed ID: 31271401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the Template for Oligomer to Fibril Conversion for Amyloid-β (1-42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics.
    Saha D; Jana B
    Chemphyschem; 2022 Dec; 23(24):e202200393. PubMed ID: 36052514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale Modeling of Amyloid Fibrils Formed by Aggregating Peptides Derived from the Amyloidogenic Fragment of the A-Chain of Insulin.
    Koliński M; Dec R; Dzwolak W
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding Atomistic Proteins in Explicit Solvent Using Simulated Tempering.
    Zhang T; Nguyen PH; Nasica-Labouze J; Mu Y; Derreumaux P
    J Phys Chem B; 2015 Jun; 119(23):6941-51. PubMed ID: 25985144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early aggregation mechanism of Aβ
    Rahman MU; Song K; Da LT; Chen HF
    Int J Biol Macromol; 2022 Apr; 204():606-616. PubMed ID: 35134456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of Aβ
    Man VH; He X; Derreumaux P; Ji B; Xie XQ; Nguyen PH; Wang J
    J Chem Theory Comput; 2019 Feb; 15(2):1440-1452. PubMed ID: 30633867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations.
    Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimerization Mechanism of Alzheimer Aβ
    Nguyen PH; Sterpone F; Pouplana R; Derreumaux P; Campanera JM
    J Phys Chem B; 2016 Dec; 120(47):12111-12126. PubMed ID: 27933940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational ensemble and polymorphism of the all-atom Alzheimer's Aβ(37-42) amyloid peptide oligomers.
    Nguyen PH; Derreumaux P
    J Phys Chem B; 2013 May; 117(19):5831-40. PubMed ID: 23581814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydroxylated carbon nanotubes on the aggregation of Aβ16-22 peptides: a combined simulation and experimental study.
    Xie L; Lin D; Luo Y; Li H; Yang X; Wei G
    Biophys J; 2014 Oct; 107(8):1930-1938. PubMed ID: 25418174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure dependence of amyloid-β(1-40) on simulation techniques and force field parameters.
    Caliskan M; Mandaci SY; Uversky VN; Coskuner-Weber O
    Chem Biol Drug Des; 2021 May; 97(5):1100-1108. PubMed ID: 33580600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn
    Song Y; Wu M; Wang C; Fang H; Lei X
    J Phys Chem B; 2024 Feb; 128(6):1385-1393. PubMed ID: 38294417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Different Glycosaminoglycans on the Structure and Aggregation of the Amyloid-β (16-22) Peptide.
    Samantray S; Strodel B
    J Phys Chem B; 2021 Jun; 125(21):5511-5525. PubMed ID: 34027669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study.
    Sun Y; Qian Z; Wei G
    Phys Chem Chem Phys; 2016 May; 18(18):12582-91. PubMed ID: 27091578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomerization of amyloid Abeta16-22 peptides using hydrogen bonds and hydrophobicity forces.
    Favrin G; Irbäck A; Mohanty S
    Biophys J; 2004 Dec; 87(6):3657-64. PubMed ID: 15377534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach.
    Rosenman DJ; Connors CR; Chen W; Wang C; García AE
    J Mol Biol; 2013 Sep; 425(18):3338-59. PubMed ID: 23811057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.