These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37139687)
1. Lattice thermal conductivity of topological insulator Bi K E V; Kumar Das S; Padhan P Phys Chem Chem Phys; 2023 May; 25(19):13577-13586. PubMed ID: 37139687 [TBL] [Abstract][Full Text] [Related]
2. Lattice thermal conductivity of ZnO: experimental and theoretical studies. Dash S; Padhan P Phys Chem Chem Phys; 2024 May; 26(20):14754-14765. PubMed ID: 38716688 [TBL] [Abstract][Full Text] [Related]
3. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
4. Anharmonic phonon frequency and ultralow lattice thermal conductivity in β-Cu Zhang W; Zheng C; Dong Y; Yang JY; Liu L Phys Chem Chem Phys; 2020 Dec; 22(48):28086-28092. PubMed ID: 33289745 [TBL] [Abstract][Full Text] [Related]
5. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations. Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286 [TBL] [Abstract][Full Text] [Related]
6. Ultralow lattice thermal conductivity of binary compounds A Zeng S; Fang L; Tu Y; Zulfiqar M; Li G Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719 [TBL] [Abstract][Full Text] [Related]
7. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe. Roychowdhury S; Jana MK; Pan J; Guin SN; Sanyal D; Waghmare UV; Biswas K Angew Chem Int Ed Engl; 2018 Apr; 57(15):4043-4047. PubMed ID: 29488301 [TBL] [Abstract][Full Text] [Related]
8. Physical Insights on the Thermoelectric Performance of Cs Zeng X; Jiang J; Niu G; Sui L; Zhang Y; Wang X; Liu X; Chen A; Jin M; Yuan K J Phys Chem Lett; 2022 Oct; 13(41):9736-9744. PubMed ID: 36222621 [TBL] [Abstract][Full Text] [Related]
9. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823 [TBL] [Abstract][Full Text] [Related]
10. Comparative investigation of the thermal transport properties of Janus SnSSe and SnS Liu G; Wang H; Gao Z; Li GL Phys Chem Chem Phys; 2020 Aug; 22(29):16796-16803. PubMed ID: 32662487 [TBL] [Abstract][Full Text] [Related]
12. Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects. Guo R; Wang X; Huang B Sci Rep; 2015 Jan; 5():7806. PubMed ID: 25608469 [TBL] [Abstract][Full Text] [Related]
13. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer. Chen X; Wang G; Li B; Wang N Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976 [TBL] [Abstract][Full Text] [Related]
14. Intrinsically Ultralow Thermal Conductivity in Ruddlesden-Popper 2D Perovskite Cs Acharyya P; Ghosh T; Pal K; Kundu K; Singh Rana K; Pandey J; Soni A; Waghmare UV; Biswas K J Am Chem Soc; 2020 Sep; 142(36):15595-15603. PubMed ID: 32799442 [TBL] [Abstract][Full Text] [Related]
15. Scattering lifetime and high figure of merit in CsAgO predicted by methods beyond relaxation time approximation. Sharma VK; Kanchana V; Gupta MK; Mittal R J Phys Condens Matter; 2022 May; 34(29):. PubMed ID: 35533647 [TBL] [Abstract][Full Text] [Related]
16. Glass-like Transport Dominates Ultralow Lattice Thermal Conductivity in Modular Crystalline Bi Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T Nano Lett; 2023 Oct; 23(20):9468-9473. PubMed ID: 37830499 [TBL] [Abstract][Full Text] [Related]
17. Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons. Yan Y; Zhou X; Jin H; Li CZ; Ke X; Van Tendeloo G; Liu K; Yu D; Dressel M; Liao ZM ACS Nano; 2015 Oct; 9(10):10244-51. PubMed ID: 26365014 [TBL] [Abstract][Full Text] [Related]
18. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer. Chen A; Tong H; Wu CW; Li SY; Jia PZ; Zhou WX Phys Chem Chem Phys; 2023 Dec; 26(1):421-429. PubMed ID: 38078535 [TBL] [Abstract][Full Text] [Related]
19. Phonon transport and thermoelectric properties of semiconducting Bi Rashid Z; Nissimagoudar AS; Li W Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478 [TBL] [Abstract][Full Text] [Related]
20. Phonon transport in Janus monolayer MoSSe: a first-principles study. Guo SD Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]