BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37139687)

  • 1. Lattice thermal conductivity of topological insulator Bi
    K E V; Kumar Das S; Padhan P
    Phys Chem Chem Phys; 2023 May; 25(19):13577-13586. PubMed ID: 37139687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice thermal conductivity of ZnO: experimental and theoretical studies.
    Dash S; Padhan P
    Phys Chem Chem Phys; 2024 May; 26(20):14754-14765. PubMed ID: 38716688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first-principles and BTE investigation of phonon transport in 1T-TiSe
    Wang ZL; Chen G; Zhang X; Tang D
    Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anharmonic phonon frequency and ultralow lattice thermal conductivity in β-Cu
    Zhang W; Zheng C; Dong Y; Yang JY; Liu L
    Phys Chem Chem Phys; 2020 Dec; 22(48):28086-28092. PubMed ID: 33289745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow lattice thermal conductivity of binary compounds A
    Zeng S; Fang L; Tu Y; Zulfiqar M; Li G
    Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.
    Roychowdhury S; Jana MK; Pan J; Guin SN; Sanyal D; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):4043-4047. PubMed ID: 29488301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical Insights on the Thermoelectric Performance of Cs
    Zeng X; Jiang J; Niu G; Sui L; Zhang Y; Wang X; Liu X; Chen A; Jin M; Yuan K
    J Phys Chem Lett; 2022 Oct; 13(41):9736-9744. PubMed ID: 36222621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu
    Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative investigation of the thermal transport properties of Janus SnSSe and SnS
    Liu G; Wang H; Gao Z; Li GL
    Phys Chem Chem Phys; 2020 Aug; 22(29):16796-16803. PubMed ID: 32662487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusually low thermal conductivity of atomically thin 2D tellurium.
    Gao Z; Tao F; Ren J
    Nanoscale; 2018 Jul; 10(27):12997-13003. PubMed ID: 29786732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects.
    Guo R; Wang X; Huang B
    Sci Rep; 2015 Jan; 5():7806. PubMed ID: 25608469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X; Wang G; Li B; Wang N
    Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically Ultralow Thermal Conductivity in Ruddlesden-Popper 2D Perovskite Cs
    Acharyya P; Ghosh T; Pal K; Kundu K; Singh Rana K; Pandey J; Soni A; Waghmare UV; Biswas K
    J Am Chem Soc; 2020 Sep; 142(36):15595-15603. PubMed ID: 32799442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering lifetime and high figure of merit in CsAgO predicted by methods beyond relaxation time approximation.
    Sharma VK; Kanchana V; Gupta MK; Mittal R
    J Phys Condens Matter; 2022 May; 34(29):. PubMed ID: 35533647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass-like Transport Dominates Ultralow Lattice Thermal Conductivity in Modular Crystalline Bi
    Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T
    Nano Lett; 2023 Oct; 23(20):9468-9473. PubMed ID: 37830499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons.
    Yan Y; Zhou X; Jin H; Li CZ; Ke X; Van Tendeloo G; Liu K; Yu D; Dressel M; Liao ZM
    ACS Nano; 2015 Oct; 9(10):10244-51. PubMed ID: 26365014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer.
    Chen A; Tong H; Wu CW; Li SY; Jia PZ; Zhou WX
    Phys Chem Chem Phys; 2023 Dec; 26(1):421-429. PubMed ID: 38078535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.