BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37140154)

  • 1. Dual enzyme-like Co-FeSe
    Zhang J; Ha E; Li D; He S; Wang L; Kuang S; Hu J
    J Mater Chem B; 2023 May; 11(19):4274-4286. PubMed ID: 37140154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis.
    Zhu L; Dai Y; Gao L; Zhao Q
    Int J Nanomedicine; 2021; 16():4559-4577. PubMed ID: 34267513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.
    Lv W; Cao M; Liu J; Hei Y; Bai J
    Acta Biomater; 2021 Nov; 135():617-627. PubMed ID: 34407474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amorphous NiB@IrO
    Wang Q; Shaik F; Lu X; Zhang W; Wu Y; Qian H; Zhang W
    Acta Biomater; 2023 Jan; 155():575-587. PubMed ID: 36374661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu
    Zhou Z; Gao Z; Chen W; Wang X; Chen Z; Zheng Z; Chen Q; Tan M; Liu D; Zhang Y; Hou Z
    Acta Biomater; 2022 Oct; 151():600-612. PubMed ID: 35953045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sm/Co-Doped Silica-Based Nanozymes Reprogram Tumor Microenvironment for ATP-Inhibited Tumor Therapy.
    Li S; Ding H; Chang J; Liu S; Dong S; Zyuzin MV; Timin AS; Feng L; He F; Gai S; Yang P
    Adv Healthc Mater; 2023 Sep; 12(24):e2300652. PubMed ID: 37306377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy.
    Dong S; Dong Y; Jia T; Liu S; Liu J; Yang D; He F; Gai S; Yang P; Lin J
    Adv Mater; 2020 Oct; 32(42):e2002439. PubMed ID: 32914495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An NIR-II-photoresponsive CoSnO
    Yan L; Shang S; Hu J; Zhang X; Chen J; Geng B; Zhao Y; Zhu J
    J Mater Chem B; 2024 Jan; 12(3):710-719. PubMed ID: 38164065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSH-depleting and H
    Li J; Yi W; Luo Y; Yang K; He L; Xu C; Deng L; He D
    Acta Biomater; 2023 Jan; 155():588-600. PubMed ID: 36328125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect engineering to tailor structure-activity relationship in biodegradable nanozymes for tumor therapy by dual-channel death strategies.
    Su Y; Lv M; Huang Z; An N; Chen Y; Wang H; Li Z; Wu S; Ye F; Shen J; Li A
    J Control Release; 2024 Mar; 367():557-571. PubMed ID: 38301929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Cobalt Ferrite Nanozymes with a Natural Enzyme to Reshape the Tumor Microenvironment for Boosted Cascade Enzyme-Like Activities.
    Chang J; Qin X; Li S; He F; Gai S; Ding H; Yang P
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45217-45228. PubMed ID: 36190449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Covalent Organic Framework Derived N-doped Carbon Nanozyme as the All-rounder for Targeted Catalytic Therapy and NIR-II Photothermal Therapy of Cancer.
    Wan X; Ge Y; Zhang J; Pan W; Li N; Tang B
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44763-44772. PubMed ID: 37712575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Spark" PtMnIr Nanozymes for Electrodynamic-Boosted Multienzymatic Tumor Immunotherapy.
    Li D; Ha E; Zhou Z; Zhang J; Zhu Y; Ai F; Yan L; He S; Li L; Hu J
    Adv Mater; 2024 Mar; 36(13):e2308747. PubMed ID: 38108600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadium Oxide Nanozymes with Multiple Enzyme-Mimic Activities for Tumor Catalytic Therapy.
    Zeng X; Wang H; Ma Y; Xu X; Lu X; Hu Y; Xie J; Wang X; Wang Y; Guo X; Zhao L; Li J
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36897191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH Oxidase-Like Nanozyme for High-Efficiency Tumor Therapy Through Increasing Glutathione Consumption and Blocking Glutathione Regeneration.
    Han D; Ding B; Zheng P; Yuan M; Bian Y; Chen H; Wang M; Chang M; Kheraif AAA; Ma P; Lin J
    Adv Healthc Mater; 2024 Apr; 13(11):e2303309. PubMed ID: 38214472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron phthalocyanine-derived nanozyme as dual reactive oxygen species generation accelerator for photothermally enhanced tumor catalytic therapy.
    Nan F; Jia Q; Xue X; Wang S; Liu W; Wang J; Ge J; Wang P
    Biomaterials; 2022 May; 284():121495. PubMed ID: 35429814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Atom Nanozyme with Asymmetric Electron Distribution for Tumor Catalytic Therapy by Disrupting Tumor Redox and Energy Metabolism Homeostasis.
    Liu Y; Wang B; Zhu J; Xu X; Zhou B; Yang Y
    Adv Mater; 2023 Mar; 35(9):e2208512. PubMed ID: 36373624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of core-in-shell Au@N-HCNs nanozymes for tumor therapy.
    Wang Z; Xu Z; Xu X; Xi J; Han J; Fan L; Guo R
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112671. PubMed ID: 35792529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AuPt-Loaded Cu-Doped Polydopamine Nanocomposites with Multienzyme-Mimic Activities for Dual-Modal Imaging-Guided and Cuproptosis-Enhanced Photothermal/Nanocatalytic Therapy.
    Wang YY; Zhang XY; Li SL; Jiang FL; Jiang P; Liu Y
    Anal Chem; 2023 Sep; 95(37):14025-14035. PubMed ID: 37694580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis.
    Wang L; Zhang X; You Z; Yang Z; Guo M; Guo J; Liu H; Zhang X; Wang Z; Wang A; Lv Y; Zhang J; Yu X; Liu J; Chen C
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202217448. PubMed ID: 36585377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.