BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37140154)

  • 21. A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis.
    Wang L; Zhang X; You Z; Yang Z; Guo M; Guo J; Liu H; Zhang X; Wang Z; Wang A; Lv Y; Zhang J; Yu X; Liu J; Chen C
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202217448. PubMed ID: 36585377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-Regulated Photothermal-Catalytic Tumor Therapy Using Polydopamine@Pt Nanozymes with the Elicitation of an Immune Response.
    Xu Z; Jiang J; Li Y; Hu T; Gu J; Zhang P; Fan L; Xi J; Han J; Guo R
    Small; 2024 May; 20(20):e2309096. PubMed ID: 38054612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Dot@MXene Nanozymes with Triple Enzyme-Mimic Activities for Mild NIR-II Photothermal-Amplified Nanocatalytic Therapy.
    Geng B; Yan L; Zhu Y; Shi W; Wang H; Mao J; Ren L; Zhang J; Tian Y; Gao F; Zhang X; Chen J; Zhu J
    Adv Healthc Mater; 2023 Feb; 12(5):e2202154. PubMed ID: 36353889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metastable FeSe
    Zhang N; Jiang L; Yue Y; Zhao X; Hu Y; Shi Y; Zhao L; Deng D
    J Mater Chem B; 2024 Jun; ():. PubMed ID: 38864401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanohole-Array Induced Metallic Molybdenum Selenide Nanozyme for Photoenhanced Tumor-Specific Therapy.
    Chen L; Ding C; Chai K; Yang B; Chen W; Zeng J; Xu W; Huang Y
    ACS Nano; 2023 Sep; 17(18):18148-18163. PubMed ID: 37713431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis-Ferroptosis Synergistic Tumor Therapy.
    Meng X; Li D; Chen L; He H; Wang Q; Hong C; He J; Gao X; Yang Y; Jiang B; Nie G; Yan X; Gao L; Fan K
    ACS Nano; 2021 Mar; 15(3):5735-5751. PubMed ID: 33705663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual Active Centers Linked by a Reversible Electron Station as a Multifunctional Nanozyme to Induce Synergetically Enhanced Cascade Catalysis for Tumor-Specific Therapy.
    Zhao Q; Zheng L; Gao Y; Li J; Wei J; Zhang M; Sun J; Ouyang J; Na N
    J Am Chem Soc; 2023 Jun; 145(23):12586-12600. PubMed ID: 37277963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu
    Chen W; Xie W; Gao Z; Lin C; Tan M; Zhang Y; Hou Z
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303694. PubMed ID: 37822154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutathione-depletion reinforced enzyme catalytic activity for photothermal assisted bacterial killing by hollow mesoporous CuO.
    Shi H; Ban C; Dai C; Li C; Zhou X; Xia R; Qian J; Cao M
    J Mater Chem B; 2022 Nov; 10(43):8883-8893. PubMed ID: 36259979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial strong interaction-enabling cascade nanozymes for apoptosis-ferroptosis synergistic therapy.
    Wei L; Wang Z; Lu X; Chen J; Zhai Y; Huang Q; Pei S; Liu Y; Zhang W
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):20-29. PubMed ID: 37708728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemin-incorporating DNA nanozyme enabling catalytic oxygenation and GSH depletion for enhanced photodynamic therapy and synergistic tumor ferroptosis.
    Xiao X; Chen M; Zhang Y; Li L; Peng Y; Li J; Zhou W
    J Nanobiotechnology; 2022 Sep; 20(1):410. PubMed ID: 36109814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering oxygen vacancy of MoO
    Zhang R; Liu C; Zhao R; Du Y; Yang D; Ding H; Yang G; Gai S; He F; Yang P
    J Colloid Interface Sci; 2022 Oct; 623():155-167. PubMed ID: 35576647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalized Fe-Doped Carbon Dots Exhibiting Dual Glutathione Consumption to Amplify Ferroptosis for Enhanced Cancer Therapy.
    Zhou M; Yang Z; Yin T; Zhao Y; Wang CY; Zhu GY; Bai LP; Jiang ZH; Zhang W
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53228-53241. PubMed ID: 37943281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing Single-Atomic Manganese Nanozymes for Synergistic Mild Photothermal/Multienzymatic Therapy.
    Wang CS; Xue HB; Zhuang L; Sun HP; Zheng H; Wang S; He S; Luo XB
    ACS Omega; 2023 Dec; 8(51):49289-49301. PubMed ID: 38162771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photothermal Enhanced and Tumor Microenvironment Responsive Nanozyme for Amplified Cascade Enzyme Catalytic Therapy.
    Zhu Y; Pan Y; Guo Z; Jin D; Wang W; Liu M; Zong M; Zheng X; Wu Y; Wang L; Tian C; Cheng J; Liu Y
    Adv Healthc Mater; 2023 Mar; 12(7):e2202198. PubMed ID: 36433798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.
    Liang M; Yan X
    Acc Chem Res; 2019 Aug; 52(8):2190-2200. PubMed ID: 31276379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CuCo
    Wang W; Cui Y; Wei X; Zang Y; Chen X; Cheng L; Wang X
    ACS Nano; 2024 Jun; 18(24):15845-15863. PubMed ID: 38832685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy.
    Li Y; Zhang Y; Dong Y; Akakuru OU; Yao X; Yi J; Li X; Wang L; Lou X; Zhu B; Fan K; Qin Z
    Adv Mater; 2023 Jun; 35(22):e2210464. PubMed ID: 36964940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of the Tumor Immune Microenvironment by Bi
    Wu F; Chen H; Liu R; Suo Y; Li Q; Zhang Y; Liu H; Cheng Z; Chang Y
    Adv Healthc Mater; 2022 Oct; 11(19):e2200809. PubMed ID: 35848849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Fe-based single-atom nanozyme with multi-enzyme activity for parallel catalytic therapy
    Niu R; Liu Y; Wang Y; Zhang H
    Chem Commun (Camb); 2022 Jul; 58(57):7924-7927. PubMed ID: 35762285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.