These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. From guide to guard-activation mechanism of the stress-sensing chaperone Get3. Ulrich K; Farkas Á; Chan O; Katamanin O; Schwappach B; Jakob U Mol Cell; 2022 Sep; 82(17):3226-3238.e7. PubMed ID: 35839781 [TBL] [Abstract][Full Text] [Related]
3. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498 [TBL] [Abstract][Full Text] [Related]
4. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk. Rimon O; Suss O; Goldenberg M; Fassler R; Yogev O; Amartely H; Propper G; Friedler A; Reichmann D Antioxid Redox Signal; 2017 Nov; 27(15):1252-1267. PubMed ID: 28394178 [TBL] [Abstract][Full Text] [Related]
5. Thiol-based switching mechanisms of stress-sensing chaperones. Ulrich K; Schwappach B; Jakob U Biol Chem; 2021 Feb; 402(3):239-252. PubMed ID: 32990643 [TBL] [Abstract][Full Text] [Related]
6. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry. Fassler R; Edinger N; Rimon O; Reichmann D J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186 [TBL] [Abstract][Full Text] [Related]
7. Molecular chaperones and proteostasis regulation during redox imbalance. Niforou K; Cheimonidou C; Trougakos IP Redox Biol; 2014; 2():323-32. PubMed ID: 24563850 [TBL] [Abstract][Full Text] [Related]
8. Stress-Activated Chaperones: A First Line of Defense. Voth W; Jakob U Trends Biochem Sci; 2017 Nov; 42(11):899-913. PubMed ID: 28893460 [TBL] [Abstract][Full Text] [Related]
9. The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Voth W; Schick M; Gates S; Li S; Vilardi F; Gostimskaya I; Southworth DR; Schwappach B; Jakob U Mol Cell; 2014 Oct; 56(1):116-27. PubMed ID: 25242142 [TBL] [Abstract][Full Text] [Related]
10. Redox-regulated chaperones. Kumsta C; Jakob U Biochemistry; 2009 Jun; 48(22):4666-76. PubMed ID: 19368357 [TBL] [Abstract][Full Text] [Related]
11. Molecular chaperones, stress proteins and redox homeostasis. Papp E; Nardai G; Söti C; Csermely P Biofactors; 2003; 17(1-4):249-57. PubMed ID: 12897446 [TBL] [Abstract][Full Text] [Related]
12. Maintaining a Healthy Proteome during Oxidative Stress. Reichmann D; Voth W; Jakob U Mol Cell; 2018 Jan; 69(2):203-213. PubMed ID: 29351842 [TBL] [Abstract][Full Text] [Related]
13. The redox switch that regulates molecular chaperones. Conway ME; Lee C Biomol Concepts; 2015 Aug; 6(4):269-84. PubMed ID: 26352357 [TBL] [Abstract][Full Text] [Related]
14. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. Reinle K; Mogk A; Bukau B J Mol Biol; 2022 Jan; 434(1):167157. PubMed ID: 34271010 [TBL] [Abstract][Full Text] [Related]
15. Beyond transcription--new mechanisms for the regulation of molecular chaperones. Winter J; Jakob U Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707 [TBL] [Abstract][Full Text] [Related]
16. The Cys Sense: Thiol Redox Switches Mediate Life Cycles of Cellular Proteins. Radzinski M; Oppenheim T; Metanis N; Reichmann D Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33809923 [TBL] [Abstract][Full Text] [Related]
17. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Winter J; Linke K; Jatzek A; Jakob U Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339 [TBL] [Abstract][Full Text] [Related]
18. Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. Becker SH; Ulrich K; Dhabaria A; Ueberheide B; Beavers W; Skaar EP; Iyer LM; Aravind L; Jakob U; Darwin KH mBio; 2020 Aug; 11(4):. PubMed ID: 32843553 [TBL] [Abstract][Full Text] [Related]
19. Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease. Sinnige T; Yu A; Morimoto RI Adv Exp Med Biol; 2020; 1243():53-68. PubMed ID: 32297211 [TBL] [Abstract][Full Text] [Related]
20. Bacterial Defense Systems against the Neutrophilic Oxidant Hypochlorous Acid. Sultana S; Foti A; Dahl JU Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32152198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]