These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile. Bishop CE; Shadid TM; Lavey NP; Kempher ML; Ballard JD; Duerfeldt AS J Bacteriol; 2022 Feb; 204(2):e0041121. PubMed ID: 34807726 [TBL] [Abstract][Full Text] [Related]
7. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. Nerber HN; Baloh M; Brehm JN; Sorg JA PLoS Pathog; 2024 Aug; 20(8):e1012507. PubMed ID: 39213448 [TBL] [Abstract][Full Text] [Related]
8. Identification of Functional Spo0A Residues Critical for Sporulation in Clostridioides difficile. DiCandia MA; Edwards AN; Jones JB; Swaim GL; Mills BD; McBride SM J Mol Biol; 2022 Jul; 434(13):167641. PubMed ID: 35597553 [TBL] [Abstract][Full Text] [Related]
9. A conserved switch controls virulence, sporulation, and motility in C. difficile. DiCandia MA; Edwards AN; Alcaraz YB; Monteiro MP; Lee CD; Vargas Cuebas G; Bagchi P; McBride SM PLoS Pathog; 2024 May; 20(5):e1012224. PubMed ID: 38739653 [TBL] [Abstract][Full Text] [Related]
10. Response Regulator CD1688 Is a Negative Modulator of Sporulation in Clostridioides difficile. Kempher ML; Morris SC; Shadid TM; Menon SK; Ballard JD; West AH J Bacteriol; 2022 Aug; 204(8):e0013022. PubMed ID: 35852332 [TBL] [Abstract][Full Text] [Related]
11. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system. Edwards AN; McBride SM PLoS Genet; 2023 Oct; 19(10):e1010841. PubMed ID: 37844084 [TBL] [Abstract][Full Text] [Related]
12. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354 [TBL] [Abstract][Full Text] [Related]
13. Identification of a Novel Regulator of Clostridioides difficile Cortex Formation. Touchette MH; Benito de la Puebla H; Alves Feliciano C; Tanenbaum B; Schenone M; Carr SA; Shen A mSphere; 2021 Jun; 6(3):e0021121. PubMed ID: 34047655 [TBL] [Abstract][Full Text] [Related]
14. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Martins D; DiCandia MA; Mendes AL; Wetzel D; McBride SM; Henriques AO; Serrano M Sci Rep; 2021 Apr; 11(1):7887. PubMed ID: 33846410 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. Underwood S; Guan S; Vijayasubhash V; Baines SD; Graham L; Lewis RJ; Wilcox MH; Stephenson K J Bacteriol; 2009 Dec; 191(23):7296-305. PubMed ID: 19783633 [TBL] [Abstract][Full Text] [Related]
17. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. Edwards AN; Krall EG; McBride SM J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010 [TBL] [Abstract][Full Text] [Related]
18. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production. Ahmed UKB; Shadid TM; Larabee JL; Ballard JD mBio; 2020 Dec; 11(6):. PubMed ID: 33443122 [TBL] [Abstract][Full Text] [Related]