BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3714045)

  • 1. Torpedo electromotor system development: biochemical differentiation of Torpedo electrocytes in vitro.
    Richardson GP; Witzemann V
    Neuroscience; 1986 Apr; 17(4):1287-96. PubMed ID: 3714045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the electromotor system of Torpedo marmorata: distribution of extracellular matrix and cytoskeletal components during acetylcholine receptor focalization.
    Richardson GP; Fiedler W; Fox GQ
    Cell Tissue Res; 1987 Mar; 247(3):651-65. PubMed ID: 3568108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in acetylcholinesterase molecular forms during the embryonic development of Torpedo marmorata.
    Witzemann V; Boustead C
    J Neurochem; 1982 Sep; 39(3):747-55. PubMed ID: 7097281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torpedo electromotor system development: developmentally regulated neuronotrophic activities of electric organ tissue.
    Richardson GP; Rinschen B; Fox GQ
    J Comp Neurol; 1985 Jan; 231(3):339-52. PubMed ID: 3968242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of a membrane-bound acetylcholinesterase form in a preparation of nerve endings from Torpedo marmorata electric organ.
    Li ZY; Bon C
    J Neurochem; 1983 Feb; 40(2):338-49. PubMed ID: 6822828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal transport in the electromotor nerves of Torpedo marmorata.
    Davies LP; Whittaker VP; Zimmermann H
    Exp Brain Res; 1977 Dec; 30(4):493-510. PubMed ID: 74342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and distribution of acetylcholine receptors and acetylcholinesterase during electric organ development in Torpedo marmorata.
    Witzemann V; Richardson G; Boustead C
    Neuroscience; 1983; 8(2):333-49. PubMed ID: 6843826
    [No Abstract]   [Full Text] [Related]  

  • 8. Non-neural agrin codistributes with acetylcholine receptors during early differentiation of Torpedo electrocytes.
    Cartaud A; Ludosky MA; Haasemann M; Jung D; Campbell K; Cartaud J
    J Cell Sci; 1996 Jul; 109 ( Pt 7)():1837-46. PubMed ID: 8832406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torpedo electromotor system development: a quantitative analysis of synaptogenesis.
    Fox GQ; Kötting D
    J Comp Neurol; 1984 Apr; 224(3):337-43. PubMed ID: 6715583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynchronous assembly of the acetylcholine receptor and of the 43-kD nu1 protein in the postsynaptic membrane of developing Torpedo marmorata electrocyte.
    Kordeli E; Cartaud J; Nghiêm HO; Devillers-Thiéry A; Changeux JP
    J Cell Biol; 1989 Jan; 108(1):127-39. PubMed ID: 2642909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric distribution of dystrophin in developing and adult Torpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane.
    Jasmin BJ; Cartaud A; Ludosky MA; Changeux JP; Cartaud J
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3938-41. PubMed ID: 2187196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The torpedo electrocyte: a model system to study membrane-cytoskeleton interactions at the postsynaptic membrane.
    Cartaud J; Cartaud A; Kordeli E; Ludosky MA; Marchand S; Stetzkowski-Marden F
    Microsc Res Tech; 2000 Apr; 49(1):73-83. PubMed ID: 10757880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregating factor from Torpedo electric organ induces patches containing acetylcholine receptors, acetylcholinesterase, and butyrylcholinesterase on cultured myotubes.
    Wallace BG
    J Cell Biol; 1986 Mar; 102(3):783-94. PubMed ID: 3949878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental expression of the 43K and 58K postsynaptic membrane proteins and nicotinic acetylcholine receptors in Torpedo electrocytes.
    LaRochelle WJ; Witzemann V; Fiedler W; Froehner SC
    J Neurosci; 1990 Oct; 10(10):3460-7. PubMed ID: 2213148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of the chemical embryology of the electromotor system of Torpedo marmorata with special reference to synaptogenesis.
    Krenz WD; Tashiro T; Wächtler K; Whittaker VP; Witzemann V
    Neuroscience; 1980; 5(3):617-24. PubMed ID: 7374961
    [No Abstract]   [Full Text] [Related]  

  • 16. Interactions of quaternary ammonium drugs with acetylcholinesterase and acetylcholine receptor of Torpedo electric organ.
    Bakry NM; Eldefrawi AT; Eldefrawi ME; Riker WF
    Mol Pharmacol; 1982 Jul; 22(1):63-71. PubMed ID: 7121452
    [No Abstract]   [Full Text] [Related]  

  • 17. Distribution of acetylcholinesterase molecular forms in brain, nerve and muscle tissue of Torpedo marmorata.
    Witzemann V; Boustead C
    Neurosci Lett; 1981 Nov; 26(3):313-8. PubMed ID: 7322442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the electromotor system in Torpedo marmorata: cationic staining of the electric organ.
    Fox GQ
    Cell Tissue Res; 1987 Oct; 250(1):115-23. PubMed ID: 2443250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunocytochemical localization of phosphatidylinositol-anchored acetylcholinesterase in excitable membranes of Torpedo ocellata.
    Eichler J; Silman I; Gentry MK; Anglister L
    Brain Res Mol Brain Res; 1990 Aug; 8(3):213-8. PubMed ID: 2170799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Torpedo electrocyte: a model system for the study of receptor-cytoskeleton interactions.
    Kordeli E; Cartaud J; Nghiêm HO; Changeux JP
    J Recept Res; 1987; 7(1-4):71-88. PubMed ID: 3625599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.