These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 37140867)
1. Prediction of spontaneous combustion susceptibility of coal seams based on coal intrinsic properties using various machine learning tools. Shukla US; Mishra DP; Mishra A Environ Sci Pollut Res Int; 2023 Jun; 30(26):69564-69579. PubMed ID: 37140867 [TBL] [Abstract][Full Text] [Related]
2. Prediction of spontaneous coal combustion tendency using multinomial logistic regression. Kursunoglu N; Gogebakan M Int J Occup Saf Ergon; 2022 Dec; 28(4):2000-2009. PubMed ID: 34144657 [TBL] [Abstract][Full Text] [Related]
3. Optimization of techniques for the extinction and prevention of coal fires produced in final walls as a result of spontaneous combustion in the Cerrejón mine-Colombia. Bustamante Rúa MO; Bustamante Baena P; Daza Aragón AJ Environ Sci Pollut Res Int; 2018 Nov; 25(32):32515-32523. PubMed ID: 30238260 [TBL] [Abstract][Full Text] [Related]
4. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Kong B; Li Z; Yang Y; Liu Z; Yan D Environ Sci Pollut Res Int; 2017 Oct; 24(30):23453-23470. PubMed ID: 28924728 [TBL] [Abstract][Full Text] [Related]
5. Long-distance migration law of radon in overburden of abandoned goaf during coal spontaneous combustion. Chan Z; Zhou B; Wang J; Lu Z; Yang Q; Dong Z; Dong K J Environ Radioact; 2023 Dec; 270():107284. PubMed ID: 37634424 [TBL] [Abstract][Full Text] [Related]
6. An improved least squares SVM with adaptive PSO for the prediction of coal spontaneous combustion. Zhang Q; Li HG Math Biosci Eng; 2019 Apr; 16(4):3169-3182. PubMed ID: 31137256 [TBL] [Abstract][Full Text] [Related]
7. Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density. Ekundayo TC; Ijabadeniyi OA; Igbinosa EO; Okoh AI Environ Pollut; 2023 Jan; 317():120734. PubMed ID: 36455774 [TBL] [Abstract][Full Text] [Related]
8. Research on the fire extinguishing performance of new gel foam for preventing and controlling the spontaneous combustion of coal gangue. Liu C; Zhang R; Wang Z; Zhang X Environ Sci Pollut Res Int; 2023 Aug; 30(38):88548-88562. PubMed ID: 37436620 [TBL] [Abstract][Full Text] [Related]
9. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines. Ren XW; Wang FZ; Guo Q; Zuo ZB; Fang QS J Occup Environ Hyg; 2015; 12(11):D239-45. PubMed ID: 26259722 [TBL] [Abstract][Full Text] [Related]
10. A visual knowledge map analysis of mine fire research based on CiteSpace. Wang F; Tan B; Chen Y; Fang X; Jia G; Wang H; Cheng G; Shao Z Environ Sci Pollut Res Int; 2022 Nov; 29(51):77609-77624. PubMed ID: 35680744 [TBL] [Abstract][Full Text] [Related]
11. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study. Jia X; Wu J; Lian C; Rao J Environ Sci Pollut Res Int; 2022 Dec; 29(58):87257-87267. PubMed ID: 35804231 [TBL] [Abstract][Full Text] [Related]
12. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion. Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622 [TBL] [Abstract][Full Text] [Related]
13. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study. Yu JR; Chen CH; Huang TW; Lu JJ; Chung CR; Lin TW; Wu MH; Tseng YJ; Wang HY J Med Internet Res; 2022 Jan; 24(1):e28036. PubMed ID: 35076405 [TBL] [Abstract][Full Text] [Related]
14. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application. Qin Y; Guo W; Xu H; Song Y; Chen Y; Ma L Environ Sci Pollut Res Int; 2022 Mar; 29(13):19741-19751. PubMed ID: 34719762 [TBL] [Abstract][Full Text] [Related]
16. Investigation on preventive inerting approach of coal spontaneous combustion in gob considering adsorption effect. Fang X; Tan B; Wang H; Wang F; Shao ZZ; Xu C; Zheng S Environ Sci Pollut Res Int; 2023 Nov; 30(52):112892-112907. PubMed ID: 37840082 [TBL] [Abstract][Full Text] [Related]
17. Machine learning-aided hydrothermal carbonization of biomass for coal-like hydrochar production: Parameters optimization and experimental verification. Liu Q; Zhang G; Yu J; Kong G; Cao T; Ji G; Zhang X; Han L Bioresour Technol; 2024 Feb; 393():130073. PubMed ID: 37984666 [TBL] [Abstract][Full Text] [Related]
18. Study on the air leakage characteristics of a goaf in a shallow coal seam and spontaneous combustion prevention and control strategies for residual coal. Li J; Li X; Liu C; Zhang N PLoS One; 2022; 17(6):e0269822. PubMed ID: 35749517 [TBL] [Abstract][Full Text] [Related]
19. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control. Qin B; Ma D; Li F; Li Y Environ Sci Pollut Res Int; 2017 Nov; 24(31):24657-24665. PubMed ID: 28913598 [TBL] [Abstract][Full Text] [Related]
20. Research Status and Development Trend of Coal Spontaneous Combustion Fire and Prevention Technology in China: A Review. Liu Y; Wen H; Chen C; Guo J; Jin Y; Zheng X; Cheng X; Li D ACS Omega; 2024 May; 9(20):21727-21750. PubMed ID: 38799345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]