These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 37140867)
21. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models. Khandelwal K; Dalai AK Molecules; 2024 May; 29(10):. PubMed ID: 38792198 [TBL] [Abstract][Full Text] [Related]
22. A method for evaluating the coal spontaneous combustion index by the coefficient of variation and Kruskal-Wallis test: a case study. Wang K; Li Y; Zhai X; Bai G Environ Sci Pollut Res Int; 2023 Apr; 30(20):58956-58966. PubMed ID: 37002521 [TBL] [Abstract][Full Text] [Related]
23. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
24. Spatio-temporal evolution law of gas-temperature coupling field in "110 method" goaf and prevention of spontaneous combustion. Wei S; Fang Z; Li Z; Liu Y; Hu D; Miao C; Wang H PLoS One; 2023; 18(11):e0293829. PubMed ID: 37983275 [TBL] [Abstract][Full Text] [Related]
25. Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face. Qi Y; Wang W; Qi Q; Ning Z; Yao Y PLoS One; 2021; 16(9):e0256911. PubMed ID: 34543303 [TBL] [Abstract][Full Text] [Related]
26. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation. Day SJ; Carras JN; Fry R; Williams DJ Environ Monit Assess; 2010 Jul; 166(1-4):529-41. PubMed ID: 19572109 [TBL] [Abstract][Full Text] [Related]
27. Prediction of black carbon in marine engines and correlation analysis of model characteristics based on multiple machine learning algorithms. Sun Y; Lü L; Cai YK; Lee P Environ Sci Pollut Res Int; 2022 Nov; 29(52):78509-78525. PubMed ID: 35697984 [TBL] [Abstract][Full Text] [Related]
28. Mercury sources in a subterranean spontaneous combustion area. Li C; Sun J; Shi J; Liang H; Cao Q; Li Z; Gao Y Ecotoxicol Environ Saf; 2020 Sep; 201():110863. PubMed ID: 32544749 [TBL] [Abstract][Full Text] [Related]
29. Study on CO source identification and spontaneous combustion warning concentration in the return corner of working face in shallow buried coal seam. Wang C; Hu P; Sun Y; Yang C Environ Sci Pollut Res Int; 2024 Feb; 31(10):15050-15064. PubMed ID: 38285265 [TBL] [Abstract][Full Text] [Related]
30. The prediction of the risks of spontaneous combustion in underground coal mines using a fault tree analysis method. Yetkin ME; Özfırat MK; Kun M; Pamukcu C MethodsX; 2024 Dec; 13():102835. PubMed ID: 39071991 [TBL] [Abstract][Full Text] [Related]
31. Dynamic characteristics of near-surface spontaneous combustion gas flux and its response to meteorological and soil factors in coal fire area. Wang H; Fan C; Li J; Zhang Y; Sun X; Xing S Environ Res; 2023 Jan; 217():114817. PubMed ID: 36395860 [TBL] [Abstract][Full Text] [Related]
32. Research on complex air leakage method to prevent coal spontaneous combustion in longwall goaf. Wang K; Tang H; Wang F; Miao Y; Liu D PLoS One; 2019; 14(3):e0213101. PubMed ID: 30822333 [TBL] [Abstract][Full Text] [Related]
33. Continuous monitoring system of gob temperature and its application. Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753 [TBL] [Abstract][Full Text] [Related]
34. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach. Ren H; Zhao Y; Xiao W; Zhang J; Chen C; Ding B; Yang X J Environ Manage; 2022 Sep; 317():115502. PubMed ID: 35751291 [TBL] [Abstract][Full Text] [Related]
35. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the thermal behaviour of pre-oxidation coal in deep mines. Niu H; Li S; Bu Y; Yang Y Environ Sci Pollut Res Int; 2023 Apr; 30(19):55414-55423. PubMed ID: 36892701 [TBL] [Abstract][Full Text] [Related]
37. Research on the technology of detection and risk assessment of fire areas in gangue hills. Wang H; Tan B; Zhang X Environ Sci Pollut Res Int; 2020 Nov; 27(31):38776-38787. PubMed ID: 32632694 [TBL] [Abstract][Full Text] [Related]
38. Coal Mine Safety Evaluation Based on Machine Learning: A BP Neural Network Model. Bai G; Xu T Comput Intell Neurosci; 2022; 2022():5233845. PubMed ID: 35321451 [TBL] [Abstract][Full Text] [Related]
39. Dynamic prediction model of spontaneous combustion risk in goaf based on improved CRITIC-G2-TOPSIS method and its application. Wang W; Qi Y; Jia B; Yao Y PLoS One; 2021; 16(10):e0257499. PubMed ID: 34705831 [TBL] [Abstract][Full Text] [Related]
40. Division of coal spontaneous combustion stages and selection of indicator gases. Li Z; Zhang M; Yang Z; Yu J; Liu Y; Wang H PLoS One; 2022; 17(4):e0267479. PubMed ID: 35476715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]