These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37140912)

  • 1. High-resolution eye-tracking via digital imaging of Purkinje reflections.
    Wu RJ; Clark AM; Cox MA; Intoy J; Jolly PC; Zhao Z; Rucci M
    J Vis; 2023 May; 23(5):4. PubMed ID: 37140912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic accommodation measurement using Purkinje reflections and machine learning.
    Ozhan FO; Aygun U; Sahin A; Urey H
    Sci Rep; 2023 Dec; 13(1):21625. PubMed ID: 38062067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Construction of a model eye for simulation of Purkinje reflections for determining the radii of curvature and the position of the crystalline lens].
    Kirschkamp T; Jöckel M; Wählisch G; Barry JC
    Biomed Tech (Berl); 1998 Nov; 43(11):318-25. PubMed ID: 9885418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small eye movements cannot be reliably measured by video-based P-CR eye-trackers.
    Holmqvist K; Blignaut P
    Behav Res Methods; 2020 Oct; 52(5):2098-2121. PubMed ID: 32206998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust eye tracking based on multiple corneal reflections for clinical applications.
    Mestre C; Gautier J; Pujol J
    J Biomed Opt; 2018 Mar; 23(3):1-9. PubMed ID: 29500875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.
    Sheehy CK; Tiruveedhula P; Sabesan R; Roorda A
    Biomed Opt Express; 2015 Jul; 6(7):2412-23. PubMed ID: 26203370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.
    Via R; Fassi A; Fattori G; Fontana G; Pella A; Tagaste B; Riboldi M; Ciocca M; Orecchia R; Baroni G
    Med Phys; 2015 May; 42(5):2194-202. PubMed ID: 25979013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-calibrating, camera-based eye tracker for the recording of rodent eye movements.
    Zoccolan D; Graham BJ; Cox DD
    Front Neurosci; 2010; 4():193. PubMed ID: 21152259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated segmentation approach to calibrating infantile nystagmus waveforms.
    Dunn MJ; Harris CM; Ennis FA; Margrain TH; Woodhouse JM; McIlreavy L; Erichsen JT
    Behav Res Methods; 2019 Oct; 51(5):2074-2084. PubMed ID: 30875024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images.
    Calderon-Uribe U; Hernandez-Gomez G; Gomez-Vieyra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When I Look into Your Eyes: A Survey on Computer Vision Contributions for Human Gaze Estimation and Tracking.
    Cazzato D; Leo M; Distante C; Voos H
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unity Human Eye Model for Gaze Tracking with a Query-Driven Dynamic Vision Sensor.
    Tang S; Wang K; Ogrey S; Villazon J; Khan S; Paul A; Ardolino N; Kubendran R; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2194-2198. PubMed ID: 36085625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High speed, long range, deep penetration swept source OCT for structural and angiographic imaging of the anterior eye.
    Chen S; Potsaid B; Li Y; Lin J; Hwang Y; Moult EM; Zhang J; Huang D; Fujimoto JG
    Sci Rep; 2022 Jan; 12(1):992. PubMed ID: 35046423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Computer-assisted measurement of ocular misalignment in infants and young children using the digital Purkinje reflection pattern procedure].
    Barry JC; Effert R; Kaupp A; Kleine M; Reim M
    Ophthalmologe; 1994 Feb; 91(1):51-61. PubMed ID: 8173252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Easily Compatible Eye-tracking System for Freely-moving Small Animals.
    Huang K; Yang Q; Han Y; Zhang Y; Wang Z; Wang L; Wei P
    Neurosci Bull; 2022 Jun; 38(6):661-676. PubMed ID: 35325370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of reflections in the photographic assessment of PCO by fusion of digital retroillumination images.
    Findl O; Buehl W; Siegl H; Pinz A
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):275-80. PubMed ID: 12506085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to 3-D gaze tracking using stereo cameras.
    Shih SW; Liu J
    IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):234-45. PubMed ID: 15369066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel functional magnetic resonance imaging compatible search-coil eye-tracking system.
    Oeltermann A; Ku SP; Logothetis NK
    Magn Reson Imaging; 2007 Jul; 25(6):913-22. PubMed ID: 17482787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys.
    de Haan MJ; Brochier T; Grün S; Riehle A; Barthélemy FV
    J Neurophysiol; 2018 Aug; 120(2):539-552. PubMed ID: 29718806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.