BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37141142)

  • 41. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs.
    Limasset A; Flot JF; Peterlongo P
    Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast scaffolding with small independent mixed integer programs.
    Salmela L; Mäkinen V; Välimäki N; Ylinen J; Ukkonen E
    Bioinformatics; 2011 Dec; 27(23):3259-65. PubMed ID: 21998153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vargas: heuristic-free alignment for assessing linear and graph read aligners.
    Darby CA; Gaddipati R; Schatz MC; Langmead B
    Bioinformatics; 2020 Jun; 36(12):3712-3718. PubMed ID: 32321164
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A de novo next generation genomic sequence assembler based on string graph and MapReduce cloud computing framework.
    Chang YJ; Chen CC; Chen CL; Ho JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S28. PubMed ID: 23282094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph.
    Morisse P; Lecroq T; Lefebvre A
    Bioinformatics; 2018 Dec; 34(24):4213-4222. PubMed ID: 29955770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pasa: leveraging population pangenome graph to scaffold prokaryote genome assemblies.
    Do VH; Nguyen SH; Le DQ; Nguyen TT; Nguyen CH; Ho TH; Vo NS; Nguyen T; Nguyen HA; Cao MD
    Nucleic Acids Res; 2024 Feb; 52(3):e15. PubMed ID: 38084888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kart: a divide-and-conquer algorithm for NGS read alignment.
    Lin HN; Hsu WL
    Bioinformatics; 2017 Aug; 33(15):2281-2287. PubMed ID: 28379292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast and SNP-aware short read alignment with SALT.
    Quan W; Liu B; Wang Y
    BMC Bioinformatics; 2021 Aug; 22(Suppl 9):172. PubMed ID: 34433415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DENTIST-using long reads for closing assembly gaps at high accuracy.
    Ludwig A; Pippel M; Myers G; Hiller M
    Gigascience; 2022 Jan; 11():. PubMed ID: 35077539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved gap size estimation for scaffolding algorithms.
    Sahlin K; Street N; Lundeberg J; Arvestad L
    Bioinformatics; 2012 Sep; 28(17):2215-22. PubMed ID: 22923455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Practical dynamic de Bruijn graphs.
    Crawford VG; Kuhnle A; Boucher C; Chikhi R; Gagie T
    Bioinformatics; 2018 Dec; 34(24):4189-4195. PubMed ID: 29939217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exact approaches for scaffolding.
    Weller M; Chateau A; Giroudeau R
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S2. PubMed ID: 26451725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ARCS: scaffolding genome drafts with linked reads.
    Yeo S; Coombe L; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 Mar; 34(5):725-731. PubMed ID: 29069293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.