These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 37141218)
1. Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification. Bifarin OO PLoS One; 2023; 18(5):e0284315. PubMed ID: 37141218 [TBL] [Abstract][Full Text] [Related]
2. Interpretable machine learning identifies metabolites associated with glomerular filtration rate in type 2 diabetes patients. An TF; Zhang ZP; Xue JT; Luo WM; Li Y; Fang ZZ; Zong GW Front Endocrinol (Lausanne); 2024; 15():1279034. PubMed ID: 38915893 [TBL] [Abstract][Full Text] [Related]
3. Application of interpretable machine learning models to improve the prediction performance of ionic liquids toxicity. Fan D; Xue K; Zhang R; Zhu W; Zhang H; Qi J; Zhu Z; Wang Y; Cui P Sci Total Environ; 2024 Jan; 908():168168. PubMed ID: 37918734 [TBL] [Abstract][Full Text] [Related]
4. Interpretable prediction of mortality in liver transplant recipients based on machine learning. Zhang X; Gavaldà R; Baixeries J Comput Biol Med; 2022 Dec; 151(Pt A):106188. PubMed ID: 36306583 [TBL] [Abstract][Full Text] [Related]
5. Creating machine learning models that interpretably link systemic inflammatory index, sex steroid hormones, and dietary antioxidants to identify gout using the SHAP (SHapley Additive exPlanations) method. Cao S; Hu Y Front Immunol; 2024; 15():1367340. PubMed ID: 38751428 [TBL] [Abstract][Full Text] [Related]
6. A hybrid approach for modeling bicycle crash frequencies: Integrating random forest based SHAP model with random parameter negative binomial regression model. Ding H; Wang R; Chen T; Sze NN; Chung H; Dong N Accid Anal Prev; 2024 Dec; 208():107778. PubMed ID: 39288451 [TBL] [Abstract][Full Text] [Related]
7. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
8. Extreme gradient boosting model to assess risk of central cervical lymph node metastasis in patients with papillary thyroid carcinoma: Individual prediction using SHapley Additive exPlanations. Zou Y; Shi Y; Sun F; Liu J; Guo Y; Zhang H; Lu X; Gong Y; Xia S Comput Methods Programs Biomed; 2022 Oct; 225():107038. PubMed ID: 35930861 [TBL] [Abstract][Full Text] [Related]
9. Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations. Dong S; Khattak A; Ullah I; Zhou J; Hussain A Int J Environ Res Public Health; 2022 Mar; 19(5):. PubMed ID: 35270617 [TBL] [Abstract][Full Text] [Related]
10. Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations. Tideman LEM; Migas LG; Djambazova KV; Patterson NH; Caprioli RM; Spraggins JM; Van de Plas R Anal Chim Acta; 2021 Sep; 1177():338522. PubMed ID: 34482894 [TBL] [Abstract][Full Text] [Related]
11. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Nohara Y; Matsumoto K; Soejima H; Nakashima N Comput Methods Programs Biomed; 2022 Feb; 214():106584. PubMed ID: 34942412 [TBL] [Abstract][Full Text] [Related]
12. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
13. Seasonal prediction of daily PM Wu Y; Lin S; Shi K; Ye Z; Fang Y Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424 [TBL] [Abstract][Full Text] [Related]
14. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Wang K; Tian J; Zheng C; Yang H; Ren J; Liu Y; Han Q; Zhang Y Comput Biol Med; 2021 Oct; 137():104813. PubMed ID: 34481185 [TBL] [Abstract][Full Text] [Related]
15. An efficient interpretable stacking ensemble model for lung cancer prognosis. Arif U; Zhang C; Hussain S; Abbasi AR Comput Biol Chem; 2024 Dec; 113():108248. PubMed ID: 39426256 [TBL] [Abstract][Full Text] [Related]
16. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Yagin FH; Cicek İB; Alkhateeb A; Yagin B; Colak C; Azzeh M; Akbulut S Comput Biol Med; 2023 Mar; 154():106619. PubMed ID: 36738712 [TBL] [Abstract][Full Text] [Related]
17. Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods. Farzipour A; Elmi R; Nasiri H Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510135 [TBL] [Abstract][Full Text] [Related]
18. IHCP: interpretable hepatitis C prediction system based on black-box machine learning models. Fan Y; Lu X; Sun G BMC Bioinformatics; 2023 Sep; 24(1):333. PubMed ID: 37674125 [TBL] [Abstract][Full Text] [Related]
19. Explainable Machine Learning Model for Predicting First-Time Acute Exacerbation in Patients with Chronic Obstructive Pulmonary Disease. Kor CT; Li YR; Lin PR; Lin SH; Wang BY; Lin CH J Pers Med; 2022 Feb; 12(2):. PubMed ID: 35207716 [TBL] [Abstract][Full Text] [Related]