These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 37141313)
1. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Morris JA; Caragine C; Daniloski Z; Domingo J; Barry T; Lu L; Davis K; Ziosi M; Glinos DA; Hao S; Mimitou EP; Smibert P; Roeder K; Katsevich E; Lappalainen T; Sanjana NE Science; 2023 May; 380(6646):eadh7699. PubMed ID: 37141313 [TBL] [Abstract][Full Text] [Related]
2. Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells. Wünnemann F; Fotsing Tadjo T; Beaudoin M; Lalonde S; Lo KS; Kleinstiver BP; Lettre G PLoS Genet; 2023 Mar; 19(3):e1010680. PubMed ID: 36928188 [TBL] [Abstract][Full Text] [Related]
3. A Multilayered Post-Genome-Wide Association Study Analysis Pipeline Defines Functional Variants and Target Genes for Systemic Lupus Erythematosus. Fazel-Najafabadi M; Looger LL; Rallabandi HR; Nath SK Arthritis Rheumatol; 2024 Jul; 76(7):1071-1084. PubMed ID: 38369936 [TBL] [Abstract][Full Text] [Related]
4. Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. Castaldi PJ; Guo F; Qiao D; Du F; Naing ZZC; Li Y; Pham B; Mikkelsen TS; Cho MH; Silverman EK; Zhou X Am J Respir Crit Care Med; 2019 Jan; 199(1):52-61. PubMed ID: 30079747 [TBL] [Abstract][Full Text] [Related]
5. CRISPR screens identify gene targets at breast cancer risk loci. Tuano NK; Beesley J; Manning M; Shi W; Perlaza-Jimenez L; Malaver-Ortega LF; Paynter JM; Black D; Civitarese A; McCue K; Hatzipantelis A; Hillman K; Kaufmann S; Sivakumaran H; Polo JM; Reddel RR; Band V; French JD; Edwards SL; Powell DR; Chenevix-Trench G; Rosenbluh J Genome Biol; 2023 Mar; 24(1):59. PubMed ID: 36991492 [TBL] [Abstract][Full Text] [Related]
6. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Broekema RV; Bakker OB; Jonkers IH Open Biol; 2020 Jan; 10(1):190221. PubMed ID: 31937202 [TBL] [Abstract][Full Text] [Related]
7. Single nucleus RNA-sequencing integrated into risk variant colocalization discovers 17 cell-type-specific abdominal obesity genes for metabolic dysfunction-associated steatotic liver disease. Lee SHT; Garske KM; Arasu UT; Kar A; Miao Z; Alvarez M; Koka A; Darci-Maher N; Benhammou JN; Pan DZ; Örd T; Kaminska D; Männistö V; Heinonen S; Wabitsch M; Laakso M; Agopian VG; Pisegna JR; Pietiläinen KH; Pihlajamäki J; Kaikkonen MU; Pajukanta P EBioMedicine; 2024 Aug; 106():105232. PubMed ID: 38991381 [TBL] [Abstract][Full Text] [Related]
8. Mapping the functional impact of non-coding regulatory elements in primary T cells through single-cell CRISPR screens. Alda-Catalinas C; Ibarra-Soria X; Flouri C; Gordillo JE; Cousminer D; Hutchinson A; Sun B; Pembroke W; Ullrich S; Krejci A; Cortes A; Acevedo A; Malla S; Fishwick C; Drewes G; Rapiteanu R Genome Biol; 2024 Feb; 25(1):42. PubMed ID: 38308274 [TBL] [Abstract][Full Text] [Related]
9. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies. Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893 [TBL] [Abstract][Full Text] [Related]
10. Genetic control of RNA splicing and its distinct role in complex trait variation. Qi T; Wu Y; Fang H; Zhang F; Liu S; Zeng J; Yang J Nat Genet; 2022 Sep; 54(9):1355-1363. PubMed ID: 35982161 [TBL] [Abstract][Full Text] [Related]
11. Systematic differences in discovery of genetic effects on gene expression and complex traits. Mostafavi H; Spence JP; Naqvi S; Pritchard JK Nat Genet; 2023 Nov; 55(11):1866-1875. PubMed ID: 37857933 [TBL] [Abstract][Full Text] [Related]
12. Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Degtyareva AO; Antontseva EV; Merkulova TI Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208629 [TBL] [Abstract][Full Text] [Related]
13. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Smith AJP; Deloukas P; Munroe PB Physiol Genomics; 2018 Jul; 50(7):510-522. PubMed ID: 29652634 [TBL] [Abstract][Full Text] [Related]
14. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
15. High-throughput characterization of functional variants highlights heterogeneity and polygenicity underlying lung cancer susceptibility. Long E; Patel H; Golden A; Antony M; Yin J; Funderburk K; Feng J; Song L; Hoskins JW; Amundadottir LT; Hung RJ; Amos CI; Shi J; Rothman N; Lan Q; ; Choi J Am J Hum Genet; 2024 Jul; 111(7):1405-1419. PubMed ID: 38906146 [TBL] [Abstract][Full Text] [Related]
16. Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia-Associated Locus. Chang H; Cai X; Li HJ; Liu WP; Zhao LJ; Zhang CY; Wang JY; Liu JW; Ma XL; Wang L; Yao YG; Luo XJ; Li M; Xiao X Biol Psychiatry; 2021 Feb; 89(3):246-255. PubMed ID: 33246552 [TBL] [Abstract][Full Text] [Related]
17. Genetic variation and microRNA targeting of A-to-I RNA editing fine tune human tissue transcriptomes. Park E; Jiang Y; Hao L; Hui J; Xing Y Genome Biol; 2021 Mar; 22(1):77. PubMed ID: 33685485 [TBL] [Abstract][Full Text] [Related]