BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37141349)

  • 1. Multilegged matter transport: A framework for locomotion on noisy landscapes.
    Chong B; He J; Soto D; Wang T; Irvine D; Blekherman G; Goldman DI
    Science; 2023 May; 380(6644):509-515. PubMed ID: 37141349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks.
    Ozkan-Aydin Y; Goldman DI
    Sci Robot; 2021 Jul; 6(56):. PubMed ID: 34321347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material remodeling and unconventional gaits facilitate locomotion of a robophysical rover over granular terrain.
    Shrivastava S; Karsai A; Aydin YO; Pettinger R; Bluethmann W; Ambrose RO; Goldman DI
    Sci Robot; 2020 May; 5(42):. PubMed ID: 33022621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor transitions in the potential energy landscape-dominated regime.
    Othayoth R; Xuan Q; Wang Y; Li C
    Proc Biol Sci; 2021 Apr; 288(1949):20202734. PubMed ID: 33878929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning robust autonomous navigation and locomotion for wheeled-legged robots.
    Lee J; Bjelonic M; Reske A; Wellhausen L; Miki T; Hutter M
    Sci Robot; 2024 Apr; 9(89):eadi9641. PubMed ID: 38657088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Obstacle Crossing Strategies for the Hybrid Wheeled-Legged Robot Centauro.
    De Luca A; Muratore L; Raghavan VS; Antonucci D; Tsagarakis NG
    Front Robot AI; 2021; 8():721001. PubMed ID: 34869611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
    Ritzmann RE; Quinn RD; Fischer MS
    Arthropod Struct Dev; 2004 Jul; 33(3):361-79. PubMed ID: 18089044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-propulsion via slipping: Frictional swimming in multilegged locomotors.
    Chong B; He J; Li S; Erickson E; Diaz K; Wang T; Soto D; Goldman DI
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2213698120. PubMed ID: 36897978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simple Yet Effective Whole-Body Locomotion Framework for Quadruped Robots.
    Raiola G; Mingo Hoffman E; Focchi M; Tsagarakis N; Semini C
    Front Robot AI; 2020; 7():528473. PubMed ID: 33501304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantage of straight walk instability in turning maneuver of multilegged locomotion: a robotics approach.
    Aoi S; Tanaka T; Fujiki S; Funato T; Senda K; Tsuchiya K
    Sci Rep; 2016 Jul; 6():30199. PubMed ID: 27444746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body-terrain interaction affects large bump traversal of insects and legged robots.
    Gart SW; Li C
    Bioinspir Biomim; 2018 Feb; 13(2):026005. PubMed ID: 29394159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning quadrupedal locomotion over challenging terrain.
    Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33087482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor Sub-functions for Control of Assistive Wearable Robots.
    Sharbafi MA; Seyfarth A; Zhao G
    Front Neurorobot; 2017; 11():44. PubMed ID: 28928650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability.
    Huang H; Feng Y; Yang X; Yang L; Shen Y
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.